"

Spatial Analysis and Mapping with R

5 Spatial Analysis—Part 1

This section introduces spatial analysis and mapping with R. It covers creation of spatial data, manipulation of spatial data, and mapping.

5.1 Creation and Manipulation of Spatial Data

Most manipulations are performed with functions from the sf package which is attached with the call library(sf).

library(sf)

Conversion of non-spatial data into a (spatial) simple feature (sf) object

In Section 4.2 we created a smaller data frame of vaccination sites in Maryland (VaccineSites_mod). It is a non-spatial data frame that contains GPS coordinates in the variable Location. The format is (latitude, longitude).

str(VaccineSites_mod, strict.width = "cut")
## 'data.frame':    556 obs. of  2 variables:
##  $ name    : chr  "Luminis Health Anne Arundel Medical Center" "Luminis Health"..
##  $ Location: chr  "(38.990512076102, -76.5341664410021)" "(38.9825972406456, -"..

Since the data frame has geometric information, it can be converted into a sf (simple feature) object with the function st_as_sf() from the sf package. sf objects contain non-spatial attributes (variables/columns) and spatial features (geometries) associated with the attributes (Pebesma & Bivand, 2021, Chapter 7). However, first we have to convert the geometric information into a format that sf can read.

st_as_sf() takes coordinates (in separate variables) and converts them into a single geometry (list) column. We therefore modify the Location variable, and split the variable into a lon and a lat variable that contain the longitude and latitude coordinates (as numbers), respectively.

# Copy VaccineSites_mod into new object
VaccineSites_mod2 <- VaccineSites_mod

# Remove round brackets
VaccineSites_mod2$Location <- gsub("[(]|[)]", "", VaccineSites_mod2$Location)

# Split columns
VaccineSites_mod2 <- tidyr::separate(VaccineSites_mod2, Location, c("lat", "lon"),
                                     sep = ", ", remove = TRUE, convert = TRUE)

str(VaccineSites_mod2, strict.width = "cut")
## 'data.frame':    556 obs. of  3 variables:
##  $ name: chr  "Luminis Health Anne Arundel Medical Center" "Luminis Health Doctors ...
##  $ lon : num  -76.5 -76.9 -76.6 -77 -76.9 ...

The first line of the code copies the original data frame into a new object (VaccineSites_mod2). The next line removes the () from the entries in Location using a regex expression and the function gsub(). The regex identifies round brackets. gsub() substitutes the round brackets with no space (""). The 3rd line splits the variable into two variables (lat for latitude, and lon for longitude) with the function separate() from the package tidyr. The call tidyr::separate() allows to call the function separate() without attaching the package (tidyr). The original variable Location is removed (remove = TRUE), and the GPS coordinates are converted into real numbers (convert = TRUE).

Now we can use st_as_sf() to convert the coordinate variables into a single geometry column. GPS coordinates are based on the WGS 84 CRS (EPSG:4326), which is assigned to the geometries with the argument crs = 4326. Note, that coordinates in a sf geometry follow a lon, lat format.

VaccineSites_sf <- st_as_sf(VaccineSites_mod2, 
                            coords = c("lon","lat"), 
                            crs = 4326)
VaccineSites_sf

Changing Coordinate References Systems (Re-projection)

As mentioned in Section 2.3, spatial analyses involving distances require a projected coordinate reference system (CRS) with linear distance units (meter, US survey feet, etc.). For Maryland we use the NAD83(2011) Maryland CRS (EPSG:6487). It uses a Lambert Conformal Conic projection (lcc) and meters.

The function st_transform() from the sf package re-projects coordinates of simple feature objects.

VaccineSites_6487 <- st_transform(VaccineSites_sf, crs = 6487)

VaccineSites_6487
## Simple feature collection with 556 features and 1 field
## geometry type:  POINT
## dimension:      XY
## bbox:           xmin: 192974.5 ymin: 37051.97 xmax: 564558.6 ymax: 228199.9
## projected CRS:  NAD83(2011) / Maryland
## First 10 features:
##                                                    name
## 1            Luminis Health Anne Arundel Medical Center
## 2       Luminis Health Doctors Community Medical Center
## 3  Grace Medical Center (formerly Bon Secours Hospital)
## 4                               Carroll Hospital Center
## 5                        Howard County General Hospital
## 6                                   Holy Cross Hospital
## 7                       MedStar Good Samaritan Hospital
## 8                               MedStar Harbor Hospital
## 9                      Greater Baltimore Medical Center
## 10            MedStar Southern Maryland Hospital Center
##                     geometry
## 1  POINT (440356.8 147055.9)
## 2    POINT (411663 146082.9)
## 3  POINT (430291.3 180062.2)
## 4      POINT (400805 209940)
## 5  POINT (409856.7 171801.7)
## 6  POINT (396836.2 149602.8)
## 7  POINT (435522.7 187900.9)
## 8  POINT (433214.1 176036.3)
## 9  POINT (432080.3 191488.2)
## 10 POINT (410811.8 120056.4)

In Section 4.1 we already read in a map showing the boundaries of Maryland’s counties (MD_counties_map).

MD_counties_map
## Simple feature collection with 24 features and 7 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: -8848486 ymin: 4564403 xmax: -8354439 ymax: 4825752
## projected CRS:  WGS 84 / Pseudo-Mercator
## First 10 features:
##    OBJECTID         COUNTY DISTRICT COUNTY_FIP COUNTYNUM CREATION_D LAST_UPDAT
## 1         1       Allegany        6          1         1 2010-01-28 2010-01-28
## 2         2   Anne Arundel        5          3         2 2006-04-18 2006-04-18
## 3         3      Baltimore        4          5         3 2006-10-09 2006-10-09
## 4         4 Baltimore City        0        510        24 2006-04-18 2009-11-16
## 5         5        Calvert        5          9         4 2010-01-28 2010-01-28
## 6         6       Caroline        2         11         5 2007-05-21 2008-07-30
## 7         7        Carroll        7         13         6 2008-06-16 2012-01-17
## 8         8          Cecil        2         15         7 2006-04-18 2008-08-20
## 9         9        Charles        5         17         8 2009-06-08 2009-06-08
## 10       10     Dorchester        1         19         9 2007-02-08 2007-02-22
##                          geometry
## 1  MULTIPOLYGON (((-8721085 48...
## 2  MULTIPOLYGON (((-8527741 47...
## 3  MULTIPOLYGON (((-8523507 48...
## 4  MULTIPOLYGON (((-8519244 47...
## 5  MULTIPOLYGON (((-8531762 46...
## 6  MULTIPOLYGON (((-8432189 47...
## 7  MULTIPOLYGON (((-8556981 47...
## 8  MULTIPOLYGON (((-8441053 48...
## 9  MULTIPOLYGON (((-8580309 46...
## 10 MULTIPOLYGON (((-8439760 46...

The output tells us that the data set is using a projected CRS based on the WGS 84 CRS with a pseudo-mercator projection.

To map, all data objects need to have the same CRS. We therefore re-project the MD_counties_map to the NAD83(2011) Maryland CRS (EPSG:6487).

MD_counties_6487 <- st_transform(MD_counties_map, crs = 6487) 

MD_counties_6487
## Simple feature collection with 24 features and 7 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 185218.2 ymin: 25771.53 xmax: 570274.7 ymax: 230947
## projected CRS:  NAD83(2011) / Maryland
## First 10 features:
##    OBJECTID         COUNTY DISTRICT COUNTY_FIP COUNTYNUM CREATION_D LAST_UPDAT
## 1         1       Allegany        6          1         1 2010-01-28 2010-01-28
## 2         2   Anne Arundel        5          3         2 2006-04-18 2006-04-18
## 3         3      Baltimore        4          5         3 2006-10-09 2006-10-09
## 4         4 Baltimore City        0        510        24 2006-04-18 2009-11-16
## 5         5        Calvert        5          9         4 2010-01-28 2010-01-28
## 6         6       Caroline        2         11         5 2007-05-21 2008-07-30
## 7         7        Carroll        7         13         6 2008-06-16 2012-01-17
## 8         8          Cecil        2         15         7 2006-04-18 2008-08-20
## 9         9        Charles        5         17         8 2009-06-08 2009-06-08
## 10       10     Dorchester        1         19         9 2007-02-08 2007-02-22
##                          geometry
## 1  MULTIPOLYGON (((284864.2 22...
## 2  MULTIPOLYGON (((434019 1735...
## 3  MULTIPOLYGON (((437063.4 22...
## 4  MULTIPOLYGON (((440528 1894...
## 5  MULTIPOLYGON (((431100.8 12...
## 6  MULTIPOLYGON (((508262.9 16...
## 7  MULTIPOLYGON (((411297.8 20...
## 8  MULTIPOLYGON (((500588 2260...
## 9  MULTIPOLYGON (((393194.3 11...
## 10 MULTIPOLYGON (((503022.8 11...

5.2 First Maps

Lets plot the vaccination sites onto a map of Maryland counties using tmap. tmap is a R package designed to create thematic maps to visualize spatial distributions. It uses a layer based approach. Every map starts with tm_shape(). tm_shape() defines the extension of the map and which method can be used to draw the features. It is followed by other layer elements, such as tm_fill() (which colors polygons), tm_borders() (which outlines polygons), or tm_symbols() (which plots markers and symbols), to name a few (Lovelace et al., 2021, Chapter 8). Each layer can be stored in or assigned to an object that can be called separately.

Mapping Vaccination Sites

To start, we create a “base map” of Maryland’s counties that is stored in the object map_MD_counties. tm_shape() is called to create a layer based on the shape object MD_counties_6487. tm_polygon() plots the polygons defined in MD_counties_6487. We could use the argument "MAP_COLORS" to color the counties as it attempts to color the polygons in such a way that neighboring polygons have different colors. However, it does not work too well for our data set. Furthermore, its color attribution is not consistent. Therefore, we will define our own color scheme that is based on the color palette GnBu from the RColorBrewer package.

library(tmap)
library(RColorBrewer)

#Define colors 
(cols <- brewer.pal(brewer.pal.info["GnBu", "maxcolors"], "GnBu")) 

mypal <- c(cols[1], cols[4], cols[3], cols[5], cols[3], 
           cols[1], cols[4], cols[4], cols[5], cols[4], 
           cols[2], cols[2], cols[1], cols[5], cols[5], 
           cols[3], cols[1], cols[3], cols[1], cols[4], 
           cols[5], cols[4], cols[3], cols[4])

# map counties
map_MD_counties <- tm_shape(MD_counties_6487) +
          tm_polygons(col = "COUNTY", 
          palette = mypal,
          legend.show = FALSE)

map_MD_counties

map_MD_counties plots the map and you should see a plot similar to Fig. 5.1 A.

Create a directory figures in your project directory.  Save the map of the county with tmap_save() as a .png file (map_MD_counties.png) in the directory figures (within the current working directory):

# save to png
tmap_save(map_MD_counties, filename = "figures/map_MD_counties.png")

Then we create a layer that has the labels of the counties.  The layer is assigned to the object MD_counties_label. Again, tm_shape(MD_counties_6487) is called. tm_text plots the name of the counties (listed in the variable COUNTY of the MD_counties_6487 data set). We set the text color to brown (argument col), and the size to 0.75. We plot the labels by calling the object MD_counties_label. A plot similar to Fig. 5.1 B should be produced.

#label
MD_counties_label <- tm_shape(MD_counties_6487) +
                     tm_text("COUNTY", 
                             col = "brown",
                             size = 0.75)
MD_counties_label

Last, we create a layer with the vaccination sites and store the layer in the object map_VaccineSites. tm_shape() is called again to create the layer based on the VaccineSites_6487 object. The geometric features of this layer are points. The points are plotted with the function tm_symbols(). The shape argument plots symbols available to R (shape 0 to 25). The fill color, outline (border) color, and line width of the outline of shapes 21 to 25 can be changed with the arguments col, border.col, and border.lwd, respectively (Figure 5.1 D). For the vaccine sites (Figures 5.1 C, 5.2, and 5.3) the fill color is set to green, the outline color to red, and the line width to 1. Calling map_VaccineSites should plot a plot similar to Figure 5.1 C.

# map vaccine sites
map_VaccineSites <- tm_shape(VaccineSites_6487) +
          tm_symbols(shape = 25,
                     size =0.3,
                     col = "green",
                     border.col = "red",
                     border.lwd = 1)
map_VaccineSites
Figures 1.5.1 A through D
Figure 5.1. A. Map of Maryland counties. B. Plot showing the names of the counties. C. Plot of the vaccination sites in Maryland (on April 4, 2021). D. Plotting symbols in R.

We can put together the final map by calling the layers, and add a legend with tmap_add_label().

MD_vac1 <- map_MD_counties +
           MD_counties_label +
           map_VaccineSites +
           tm_add_legend(type = "symbol",
                         shape = 25,
                         size = 0.75,
                         col = "green",
                         border.col = "red",
                         label = "COVID-19 Vaccination Site") +
            tm_layout(legend.text.size = 1)
MD_vac1

tm_add_legends() adds (manually) a legend to the plot. We just want to indicate what the plotted symbols stand for (i.e, COVID-19 Vaccination Sites). Therefore, the type is set to "symbol." We define the shape, fill and outline color (copy the respective parameters (arguments) from tm_symbols), and the size of the symbol for the legend. label adds the legend text ("COVID-19 Vaccination Site"). The last function, tm_layout() allows to fine tune the plot. Here we only specify the size of the legend label. The last line (MD_vac1) plots the map. The plot should look similar to the plot in Figure 5.2.

Save the plot as a .png file (MD_vac_sites.png) in the directory figures (within the current working directory).

# save to png
tmap_save(MD_vac1, filename = "figures/MD_vac_sites.png")

 

 

Figure 1.5.2
Figure 5.2. Location of COVID-19 vaccination sites in Maryland (last updated: April 4, 2021)

The map shows that there are clusters of vaccination sites in the I-95 and I-270 corridors. Rural areas seem to be less covered. To check we can add urban census tracts to the plot. The data frame MD_CensusTracts_Map has all the information we need. However, its CRS is NAD83.

MD_CensusTracts_Map  
## Simple feature collection with 1403 features and 13 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: -79.48765 ymin: 37.91172 xmax: -75.04894 ymax: 39.72304
## geographic CRS: NAD83
## First 10 features:
##    CensusTract               GEO_ID STATE COUNTY  TRACT NAME  LSAD CENSUSAREA
## 1  24001000100 1400000US24001000100    24    001 000100    1 Tract    187.937
## 2  24001000200 1400000US24001000200    24    001 000200    2 Tract     48.067
## 3  24001000300 1400000US24001000300    24    001 000300    3 Tract      8.656
## 4  24001000400 1400000US24001000400    24    001 000400    4 Tract      3.723
## 5  24001000500 1400000US24001000500    24    001 000500    5 Tract      4.422
## 6  24001000600 1400000US24001000600    24    001 000600    6 Tract      1.577
## 7  24001000700 1400000US24001000700    24    001 000700    7 Tract      0.712
## 8  24001000800 1400000US24001000800    24    001 000800    8 Tract      1.255
## 9  24001001000 1400000US24001001000    24    001 001000   10 Tract      0.448
## 10 24001001100 1400000US24001001100    24    001 001100   11 Tract      0.301
##      County Urban POP2010 LowIncomeTracts HUNVFlag
## 1  Allegany     0    3718               1        0
## 2  Allegany     0    4564               1        0
## 3  Allegany     0    2780               1        0
## 4  Allegany     1    3022               1        0
## 5  Allegany     1    2734               1        0
## 6  Allegany     1    2965               1        0
## 7  Allegany     1    3387               1        1
## 8  Allegany     1    2213               1        1
## 9  Allegany     1    2547               1        0
## 10 Allegany     1    1493               1        0
##                          geometry
## 1  MULTIPOLYGON (((-78.42058 3...
## 2  MULTIPOLYGON (((-78.71775 3...
## 3  MULTIPOLYGON (((-78.72077 3...
## 4  MULTIPOLYGON (((-78.70206 3...
## 5  MULTIPOLYGON (((-78.75435 3...
## 6  MULTIPOLYGON (((-78.74107 3...
## 7  MULTIPOLYGON (((-78.75033 3...
## 8  MULTIPOLYGON (((-78.76588 3...
## 9  MULTIPOLYGON (((-78.77711 3...
## 10 MULTIPOLYGON (((-78.76443 3...

We re-project MD_CensusTracts_Map to NAD83(2011) Maryland (EPSG:6487).

MD_CensusTracts_6487 <- st_transform(MD_CensusTracts_Map, crs = 6487)
MD_CensusTracts_6487
## Simple feature collection with 1403 features and 13 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 185230.9 ymin: 27801.06 xmax: 570294.2 ymax: 230941.9
## projected CRS:  NAD83(2011) / Maryland
## First 10 features:
##    CensusTract               GEO_ID STATE COUNTY  TRACT NAME  LSAD CENSUSAREA
## 1  24001000100 1400000US24001000100    24    001 000100    1 Tract    187.937
## 2  24001000200 1400000US24001000200    24    001 000200    2 Tract     48.067
## 3  24001000300 1400000US24001000300    24    001 000300    3 Tract      8.656
## 4  24001000400 1400000US24001000400    24    001 000400    4 Tract      3.723
## 5  24001000500 1400000US24001000500    24    001 000500    5 Tract      4.422
## 6  24001000600 1400000US24001000600    24    001 000600    6 Tract      1.577
## 7  24001000700 1400000US24001000700    24    001 000700    7 Tract      0.712
## 8  24001000800 1400000US24001000800    24    001 000800    8 Tract      1.255
## 9  24001001000 1400000US24001001000    24    001 001000   10 Tract      0.448
## 10 24001001100 1400000US24001001100    24    001 001100   11 Tract      0.301
##      County Urban POP2010 LowIncomeTracts HUNVFlag
## 1  Allegany     0    3718               1        0
## 2  Allegany     0    4564               1        0
## 3  Allegany     0    2780               1        0
## 4  Allegany     1    3022               1        0
## 5  Allegany     1    2734               1        0
## 6  Allegany     1    2965               1        0
## 7  Allegany     1    3387               1        1
## 8  Allegany     1    2213               1        1
## 9  Allegany     1    2547               1        0
## 10 Allegany     1    1493               1        0
##                          geometry
## 1  MULTIPOLYGON (((277992.7 21...
## 2  MULTIPOLYGON (((252677.1 22...
## 3  MULTIPOLYGON (((252464.7 22...
## 4  MULTIPOLYGON (((253978.3 22...
## 5  MULTIPOLYGON (((249423 2212...
## 6  MULTIPOLYGON (((250523.8 21...
## 7  MULTIPOLYGON (((249749.1 22...
## 8  MULTIPOLYGON (((248425.6 22...
## 9  MULTIPOLYGON (((247506.5 22...
## 10 MULTIPOLYGON (((248561.4 22...

For the map we are only interested in urban census tracts. We extract the urban tracts from MD_CensusTracts_6487 (Urban == 1), and re-draw the map. Urban tracts are highlighted in orange.

# Filter out urban centers
urban_tracts <- subset(MD_CensusTracts_6487, Urban == 1)

urban_tracts

# Map urban tracts
# Layer for urban tracts
map_urban_tracts <- tm_shape(urban_tracts) +
                    tm_fill(col = "orange")

# save as png
tmap_save(map_urban_tracts, filename = "figures/map_urban_tracts.png")

Compile the map.

MD_vac2 <- map_MD_counties +
           map_urban_tracts +
           MD_counties_label +
           map_VaccineSites +
           tm_add_legend(type = "symbol",
                         shape = c(22, 25),
                         size = c(1, 0.75),
                         col = c("orange", "green"),
                         border.col = c("black", "red"),
                         label = c("Urban Census Tract", 
                                   "COVID-19 Vaccination Site")) +
           tm_layout(legend.text.size = 1)

MD_vac2

# save to png
tmap_save(MD_vac2, filename = "figures/MD_vac2_sites_census_tract.png")

We added an orange  square (symbol 22) in tm_add_legend():

           tm_add_legend(type = "symbol",
                         shape = c(22, 25),
                         size = c(1, 0.75),
                         col = c("orange", "green"),
                         border.col = c("black", "red"),
                         label = c("Urban Census Tract", "COVID-19 Vaccination Site"))

Calling Map_vac2 should produce a plot similar to Figure 5.3.

Figure 1.5.3
Figure 5.3. Location of COVID-19 vaccination sites in Maryland (last updated: April 4, 2021). Urban census tracts are highlighted in orange.


5.3 Manipulating Geometries

The sf package has functions that allow us to manipulate the spatial features of a sf object, including

  • identify features based on their spatial relation to other features,
  • clip geometries, and
  • merge geometries.

Identify spatial features based on spatial relations to other features

To identify or visualize vaccination sites in rural and urban centers, we plotted urban tracts onto the vaccination site map. Alternatively, we can extract vaccination sites that are located in rural tracts and urban centers with the function st_intersection().

We already created a sf object that features urban census tracts (urban_tracts). Lets also create a sf object for rural census tracts.

rural_tracts <- subset(MD_CensusTracts_6487, Urban == 0)

The following lines of code identify the vaccination sites that are located within or on the border of urban and rural census tracts, respectively. You will likely see warnings. They can be ignored.

vac_urban <- st_intersection(urban_tracts, VaccineSites_6487)
## Warning: attribute variables are assumed to be spatially constant throughout all
## geometries
vac_urban
## Simple feature collection with 494 features and 14 fields
## geometry type:  POINT
## dimension:      XY
## bbox:           xmin: 192974.5 ymin: 46073.83 xmax: 560461.9 ymax: 224285.4
## projected CRS:  NAD83(2011) / Maryland
## First 10 features:
##      CensusTract               GEO_ID STATE COUNTY  TRACT    NAME  LSAD
## 40   24003702701 1400000US24003702701    24    003 702701 7027.01 Tract
## 1070 24033806711 1400000US24033806711    24    033 806711 8067.11 Tract
## 1301 24510200100 1400000US24510200100    24    510 200100    2001 Tract
## 394  24013507801 1400000US24013507801    24    013 507801 5078.01 Tract
## 629  24027605602 1400000US24027605602    24    027 605602 6056.02 Tract
## 829  24031703901 1400000US24031703901    24    031 703901 7039.01 Tract
## 1369 24510270803 1400000US24510270803    24    510 270803 2708.03 Tract
## 1323 24510250203 1400000US24510250203    24    510 250203 2502.03 Tract
## 314  24005490605 1400000US24005490605    24    005 490605 4906.05 Tract
## 926  24033801207 1400000US24033801207    24    033 801207 8012.07 Tract
##      CENSUSAREA          County Urban POP2010 LowIncomeTracts HUNVFlag
## 40        1.812    Anne Arundel     1    4815               0        0
## 1070      0.548 Prince George's     1    5146               1        0
## 1301      0.102  Baltimore City     1    1846               1        1
## 394       2.423         Carroll     1    5652               0        1
## 629       2.809          Howard     1    7610               0        0
## 829       0.554      Montgomery     1    2957               0        0
## 1369      0.845  Baltimore City     1    6268               1        0
## 1323      0.357  Baltimore City     1    2018               1        1
## 314       0.844       Baltimore     1    5182               1        0
## 926       3.141 Prince George's     1    4432               0        0
##                                                      name
## 40             Luminis Health Anne Arundel Medical Center
## 1070      Luminis Health Doctors Community Medical Center
## 1301 Grace Medical Center (formerly Bon Secours Hospital)
## 394                               Carroll Hospital Center
## 629                        Howard County General Hospital
## 829                                   Holy Cross Hospital
## 1369                      MedStar Good Samaritan Hospital
## 1323                              MedStar Harbor Hospital
## 314                      Greater Baltimore Medical Center
## 926             MedStar Southern Maryland Hospital Center
##                       geometry
## 40   POINT (440356.8 147055.9)
## 1070   POINT (411663 146082.9)
## 1301 POINT (430291.3 180062.2)
## 394      POINT (400805 209940)
## 629  POINT (409856.7 171801.7)
## 829  POINT (396836.2 149602.8)
## 1369 POINT (435522.7 187900.9)
## 1323 POINT (433214.1 176036.3)
## 314  POINT (432080.3 191488.2)
## 926  POINT (410811.8 120056.4)
vac_rural <- st_intersection(rural_tracts, VaccineSites_6487)
## Warning: attribute variables are assumed to be spatially constant throughout all
## geometries
vac_rural
## Simple feature collection with 62 features and 14 fields
## geometry type:  POINT
## dimension:      XY
## bbox:           xmin: 219869 ymin: 37051.97 xmax: 564558.6 ymax: 228199.9
## projected CRS:  NAD83(2011) / Maryland
## First 10 features:
##      CensusTract               GEO_ID STATE COUNTY  TRACT    NAME  LSAD
## 353  24009860702 1400000US24009860702    24    009 860702 8607.02 Tract
## 1091 24035810400 1400000US24035810400    24    035 810400    8104 Tract
## 1106 24037875500 1400000US24037875500    24    037 875500    8755 Tract
## 1120 24039930300 1400000US24039930300    24    039 930300    9303 Tract
## 1198 24047951300 1400000US24047951300    24    047 951300    9513 Tract
## 366  24011955301 1400000US24011955301    24    011 955301 9553.01 Tract
## 465  24019970702 1400000US24019970702    24    019 970702 9707.02 Tract
## 1129 24041960501 1400000US24041960501    24    041 960501 9605.01 Tract
## 1185 24045010702 1400000US24045010702    24    045 010702  107.02 Tract
## 1194 24047950900 1400000US24047950900    24    047 950900    9509 Tract
##      CENSUSAREA       County Urban POP2010 LowIncomeTracts HUNVFlag
## 353       9.430      Calvert     0    2974               1        0
## 1091     47.327 Queen Anne's     0    6053               0        0
## 1106     34.068   St. Mary's     0    8631               0        1
## 1120     88.028     Somerset     0    2539               1        0
## 1198      5.936    Worcester     0    2816               1        0
## 366      42.331     Caroline     0    4111               0        0
## 465      43.137   Dorchester     0    3987               0        0
## 1129     22.790       Talbot     0    4752               0        0
## 1185     27.469     Wicomico     0    8671               1        1
## 1194     26.689    Worcester     0    2017               0        0
##                                       name                  geometry
## 353       Calvert County Health Department    POINT (435102 99044.7)
## 1091 Queen Anne's County Health Department POINT (481028.7 153466.8)
## 1106 Saint Mary's County Health Department POINT (431747.9 70311.09)
## 1120     Somerset County Health Department POINT (513236.4 51719.08)
## 1198    Worcester County Health Department POINT (542330.9 57518.24)
## 366                         Walmart Denton   POINT (502252.9 134723)
## 465                      Walmart Cambridge POINT (482594.3 98828.14)
## 1129                        Walmart Easton POINT (482184.2 123210.8)
## 1185                     Walmart Salisbury POINT (524947.9 84315.16)
## 1194                        Walmart Berlin POINT (560573.2 76351.68)

Sixty-two vaccination sites are in rural tracts, and 494 in urban tracts. Let’s see how many vaccination sites per 100,000 (or in scientific notation 1e05) residents are in rural and urban tracts (based on population data from the 2010 census). The variable POP2010 lists the total number of residents in each tract. The number of vaccination sites for each subset equals the number of entries and can be displayed with nrow() nrow() lists the number of rows of a data frame.

rural_pop_100k <- nrow(vac_rural)/sum(vac_rural$POP2010)*1e05 
rural_pop_100k
## [1] 21.07353
urban_pop_100k <- nrow(vac_urban)/sum(vac_urban$POP2010)*1e05
urban_pop_100k
## [1] 21.07604

The result suggests that based on the plain number of vaccination sites, rural and urban tracts are overall equally covered. Rural tracts have 21.07 vaccination sites per 100,000 residents, and urban tracts 21.08.

To visualize, we map the urban and rural vaccination sites (green inverted triangles (symbol 25): urban, blue diamonds (symbol 23): rural sites; for symbols, see Figure 5.1 D). We compile the map as we have done before. First, we create map layers for the urban and rural vaccination sites. Then we add these two layers to the county map featuring urban tracts.

map_vac_urban <- tm_shape(vac_urban) + 
                 tm_symbols(shape = 25,
                            size =0.3,
                            col = "green",
                            border.col = "red",
                            border.lwd = 1)

map_vac_rural <- tm_shape(vac_rural) + 
                 tm_symbols(shape = 23,
                            size =0.3,
                            col = "blue",
                            border.col = "red",
                            border.lwd = 1)

MD_vac3 <- map_MD_counties +
           map_urban_tracts +
           MD_counties_label +
           map_vac_urban +
           map_vac_rural +
           tm_add_legend(type = "symbol",
                         shape = c(22, 25, 23),
                         size = c(1, 0.75, 0.75),
                         col = c("orange", "green", "blue"),
                         border.col = c("black", "red", "red"),
                         label = c("Urban Census Tract", 
                                   "Urban COVID-19 Vaccination Site", 
                                   "Rural COVID-19 Vaccination Site")) +
           tm_layout(legend.text.size = 1)

#call map
MD_vac3

# save to png
tmap_save(MD_vac3, filename = "figures/MD_vac3_urban_rural.png")

The code should print a map similar to Figure 5.4.

 

Figure 1.5.4
Figure 5.4. Location of COVID-19 vaccination sites in urban and rural census tracts in Maryland (last updated: April 4, 2021). Urban tracts are highlighted in orange.

References

Lovelace, R., Nowosad, J., & Jannes, M. (2021). Geocomputation with R. https://geocompr.robinlovelace.net/ index.html

Pebesma, E., & Bivand, R. (2021). Spatial data science with applications in R. https://keen-swartz-3146c4.netlify.app/index.html

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Spatial Analysis and Mapping with R: A Short Tutorial Copyright © 2021 by Wolf T. Pecher is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book