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Introduction

JEREMY BOETTINGER

This book contains content originally posted to the Math Support
Center Resources page, a blog run by student tutors and staff
at the University of Baltimore. The chapters are mostly organized
according to the tagging system of the source blog and may include
references to specific math and statistics courses offered by the
university.
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PART I

USING SPSS

This section contains chapters about how to use SPSS Statistics, a
software package used in statistical analysis. A link to the original
blog post is included at the bottom of each chapter.
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CHAPTER 1

Using Data and Variable View

JENNA LEHMANN

When getting started with SPSS, you may initially be confused
about how to input your data in such a way that it’s easy to read
and will allow you do to do the analyses that you would like to do.

When first opening a new dataset on SPSS, you will be greeted
with this blank screen on the Data View tab.
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The Data View tab is where you will be inputting the actual data.
The way the data should be organized is that all data corresponding
to a variable is lined up by column. Data for more than one variable
which corresponds to an individual should be organized by row.
The picture shows data for three variables organized by column.
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But I want to know what it is I’m looking at; which column
corresponds to which variable? This is when you would click on the
Variable view tab to name your variables. All you have to do is click
on the variable you want to rename and type in the name like an
Excel spreadsheet.
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If you’re working with interval or ratio variables, skip this next
step, but because I want to try working with nominal variables, I’m
going to reenter my data on the Data View so that my condition
1 is full of only 0’s, 1’s, and 2’s. I want to make my condition 2
full of only 1’s, 2’s, 3’s, 4’s, and 5’s. Finally, I want my condition 3
to be full of 0’s and 1’s. This is because I want each number to
relate back to a certain response. I want my condition 1 to be the
answer to the question “Do you study for tests?” with the possible
answers being “No,” “Sometimes,” and “Yes.” I want my condition 2
to be participant letter grades: A, B, C, D, and E. Finally, I want my
condition 3 data to the question “Do you, on average, get 8 hours
of sleep a night?” with the answers being “Yes” and “No.” Again, if
you’re working with data which is not nominal or categorical, don’t
bother with labeling.
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In order to make this easier to understand when I’m actually
analyzing the data, I’m going to name each of these numbers using
the Values section which is highlighted in the Variable View picture
two pictures up. Simply double click it to make the blue button
appear and click the blue button for a pop-up to appear.
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To name a number, simply type the value into the Input box, type
the name you would like to give it into the Label box, and click the
Add button. When you’re done naming all of your numbers, you
can hit the OK button. We won’t be going over what good this does
in this post, but it will be important for reading your output data
later on, which will be discussed in other posts.
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Going back to the Data View, as you can see, changing the names
of your data digits does not affect the Data View. I also went ahead
and changed the names of the variables in Variable View so that
the data have some more context. There are some other things in
Variable View which may be important to consider moving forward.
Like I said, we’re working with nominal values and SPSS gives us
the option of defining them as such for analysis purposes. All you
have to do is go back to Variable View, click the button under
Measure which corresponds with the variable you would like to
change the scale for, and select what you would like from the drop-
down menu.
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Finally, when I’m working with whole numbers, I find the two
decimals at the end of each number to be rather annoying. To get
rid of those, just click the box you want to change under Decimals
and change the number of decimals you would like to see next to
each number in that variable column.
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These are all the basics of inputting data. It is possible to copy
and paste Excel data into SPSS if you already have a data set ready.
Please just keep in mind that unlike working in Excel, variable
names cannot simply be put in the first rows of the sheet, they
must be logged in Variable View.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 30, 2019.
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CHAPTER 2

Descriptive Statistics

JENNA LEHMANN

Sometimes you’ll want to get some basic information on the data
you have. Running these descriptive statistics is pretty straight
forward. First, click the Analyze button, hover over the Descriptive
Statistics tab, and then you’ll be able to choose a few different
options. I prefer just clicking the frequencies button because it
gives you the option to look at frequencies as well as other kinds of
descriptives.
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After clicking that, a pop-up will appear. Highlight the groups you
would like descriptives and frequencies on and move them over to
the right.
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To get the descriptive data we want, click the Statistics button.
You can choose from a variety of different descriptives. I like getting
all the measures of central tendency and everything related to
variability, but as you can see there are other options as well.

After clicking out of that, you can then have SPSS make you a
chart or a graph by clicking the Charts button. I decided not to go
ahead with that, but I wanted to point out that option. There are
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some other buttons to click, but I personally have never needed to
mess with those.

Once you finish with the pop-up, the output should appear on a
separate window. These are screenshots of what my data looked
like. This output is pretty easy to read because it’ll just tell you what
you asked to know. Other outputs may be more difficult to read so
in future posts I’ll go into detail about what it is you’ll be looking at.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on July 1, 2019.

DESCRIPTIVE STATISTICS 19



CHAPTER 3

Comparing Means: Single
Sample t-test

JENNA LEHMANN

With a one-sample t-test, we only need to worry about working
with one sample. When starting, you should already know the
population mean you’ll be comparing the sample to. So in this first
picture, we have one column of data lined up and ready to go.
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The next step is to click the Analyze button, hover over Compare
Means, and click One-Sample T-Test.
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A pop-up should appear. Simply move the name of your test
variable to the right. In the Test Variable, type in the population
mean you would like to compare the sample to.
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This is what my output ended up looking like. In the first row of
boxes, N is the number of data points you have. In the second row
of boxes, t is the t-statistic, df is the degrees of freedom, and Sig. is
the p-value. The p-value will tell you if the difference is significant.
Usually, we look for a p-value less than or equal to .05 before we
state that the difference between the means is significant. In this
case, the difference is significant.

COMPARING MEANS: SINGLE SAMPLE T-TEST 23



This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on July 1, 2019.
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CHAPTER 4

Comparing Means: Independent
Samples t-test

JENNA LEHMANN

So far we’ve talked about creating independent variables, but what
about levels? This may seem strange at first, but levels of a
condition need to be spelled out by numbers. Usually, I just assign
condition 1 a 1 and condition 2 a 2. You can see in the picture below
how this looks. You can’t see this, but there are 30 individuals in
total, half in condition 1, and half in condition 2.
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For this tutorial, we’ll pretend that this data has been collected by
a struggling baker who wants to try out a new cookie recipe to see
if customers would like it better. She asks 15 people to sample her
old recipe and 15 people to sample her new recipe and rate how
they liked the cookie on a scale of 1-5. To make this easier to read in
the output later, I’m going to label the conditions in Variable View.
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Now it’s time for the actual analysis. Click the Analyze button,
hover over Compare Means, and click Independent Samples T-Test.
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A pop-up will appear. Put your dependent variable in the Testing
Variable box and your conditions in the Grouping Variable box.
Then, click the Define Groups button.
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Another pop-up will appear. Simply fill in each box with the
number that corresponds to your groups (again, in my case it’s just
1 and 2).

COMPARING MEANS: INDEPENDENT SAMPLES T-TEST 29



Your output will look something like this. The first row of boxes
will simply give you descriptives about your data. The second box
get’s a little tricker. The boxes under Levene’s Test for Equality of
Variances simply allows the user to see if the two samples have
equal variances. In this case, we want the p-value to be less than .05
because we don’t want any differences in the variances. It looks like
we’re in the clear for this data set. The next few boxes give us the
t-statistic, the degrees of freedom, and the p-value. It looks like our
conditions are significantly different. Remember to report a .000
p-value as p<0.01, because there is no such thing as a p-value of
0. So we know that there’s a difference, but which cookie got the
higher score overall? Simply look at the means. The new recipe has
a higher mean rating than the old recipe.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on July 1, 2019.
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CHAPTER 5

Comparing Means: Repeated
Measures t-test

JENNA LEHMANN

In this section, we’ll be talking about how to properly conduct a
repeated measures t-test on SPSS. Before, when we were working
on independent t-tests, we needed to create a list of numbers
which represented group categories so that the corresponding
continuous data was grouped properly. In this kind of t-test though,
each “Variable” actually becomes a level. In this case of this
example, we’re looking at the data from a before and after. The
“Before” consists of the number of alcoholic drinks 30 college
students are consuming a week. The “After” consists of the number
of alcoholic drinks the same college students were drinking after
having taken a Wellness class which focused on the effects of drug
and alcohol on the mind and body. If you’re confused as to how
this differs from an independent samples t-test, I suggest looking
at the Independent Samples t-test and Repeated Measures t-test
chapters.
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Just for reference, I have already labeled my columns Before and
After in the Variable View section.
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To conduct the test, click the Analyze button, hover over
Compare Means, and click Paired Samples t-test.
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Simply drag your before and after into the correct slots. These
are usually done in chronological order from left to right.
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Finally, you’ll get your output. Based on this particular test, we
can see that we got a t score of 11.4, which is already a pretty
good indicator that the results will be significant. Typically, anything
above a 3 or 4 will be significant. Just to be sure, let’s look at our
p value. It’s less than 0.05, which is our typical alpha level, which
means that there was a significant difference between the before
and after. To see in which direction there is a difference, we go up
to the means. Which one is smaller or bigger than the other? We
can see that the mean drinks before the intervention was higher
on average than after the intervention. In this case, we would say
participants drank significantly fewer drinks per week after the
intervention than before the intervention.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on July 16, 2019.
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CHAPTER 6

Comparing Means: Repeated
Measures One-Way ANOVA

JENNA LEHMANN

This post will be about finding a difference in means when it comes
to repeated measures in research designs with a factor with more
than 2 levels. Just like with the Repeated Measures t-test, we’ll be
lining our levels up in columns. For this example, we’ll pretend
that we’ve collected data on self-reported depression. Participants
were asked to rate on a scale from 1-9 how severe they felt their
depression is. They were then given medication to take which is
known to reduce depressive symptoms. Participants were asked
again after 6 months how high they rated their depression. They
were asked one last time at the end of 12 months.
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I went ahead and named the levels in the Variable view.
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To run the actual test, simply go up to Analyze, scroll over
General Linear Model, and click Repeated Measures.
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A pop-up will appear. In the first box, create the name of your
factor. In this case, I’ve named it time, because we’re doing
comparisons across time. In the second box, I typed in 3 because
we have 3 levels and then I pressed Add. In the third box, I named
our dependent variable and clicked Add. Next, we need to Define
our factors.
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Another pop up will appear. Move the levels over into the top,
right box. I prefer doing this in chronological order from top to
bottom. Then, click Options.
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I would recommend getting means for everything, so move
OVERALL and time over to the box on the right. I also recommend
clicking the Descriptive Statistics and Estimate of Effect Size boxes.
Finally, click the Compare Means checkbox; it’s located under the
big, white box on the right. Click all the Continues and OK’s that
follow.
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We can see from the means that the average for Start is greater
than at 6 months is greater than at 12 months. This is important to
know, but this does not prove significance.
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Go to the Tests of Within-Subjects Effects box and find “time”
on the left, scroll over to Greenhouse-Geisser, and then scroll all
the way to F and significance. We have a huge F score of 68.5
and a significance which is less than 0.05 and so we can say that
somewhere there is a significant difference in the groups. If you
need to report the effect size, you can find it under Partial Eta
Squared.
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This last box shows us the post-hoc under Pairwise Comparison.
As you can see, all the comparisons are significantly different with
a significance less than 0.05. This means that we can say that there
was a significant difference in times since treatment began with
participants expressing the most depression before the treatment
started, less depression 6 months after the treatment started, and
the least depression after 12 months of treatment.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on July 16, 2019.
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CHAPTER 7

Comparing Means: Independent
Measures One-Way ANOVA

JENNA LEHMANN

Just like an independent samples t-test, an Independent measures
one-way ANOVA uses independent subjects for each level/
condition within an independent variable. In this example, we’re
growing plants. In Variable View, I’ve made the independent
variable Condition (in this case the amount of water I’ll be giving to
the plants) and the dependent variable Height.
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Next, it’s important to label the levels of your independent
variable, so I clicked the cell under Values and assigned the
numbers 1, 2, and 3 a condition: no water, some water, and a lot of
water.

COMPARING MEANS: INDEPENDENT MEASURES ONE-WAY
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Then, I just put my data in Data View, with the Condition column
full of the numbers representing the different conditions and the
Height column full of the measured heights of each plant.
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To conduct the test, click Analyze at the top, hover over Compare
means, and then click One-Way ANOVA.

COMPARING MEANS: INDEPENDENT MEASURES ONE-WAY
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You’ll be greeted with a pop-up asking you to arrange the
variables you would like to test. The dependent variable goes in
the top box and the independent variable goes in the bottom box.
Then, click the Post Hoc box.
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You will be greeted by another pop-up. Here you can click the
kind of post hoc test you would like to run. Tukey seems to be
pretty popular, so that’s the one I chose. Then, click Continue.

Once back to the main pop-up, then click Options. Here you’ll

COMPARING MEANS: INDEPENDENT MEASURES ONE-WAY
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be able to add in descriptive statistics (like mean, SD, etc.) and a
Homogeneity of Variance test, which may be important to report
depending on what your professor is asking for. Then, click
continue and finally OK.

Your output will look something like this. First is always the
descriptives. The next box is the results of the test of homogeneity
of variances. Remember, this is the one that we don’t want to be
significant; we want there to be no difference between the groups.
Looking under Sig, we can see that our p-value is greater than 0.05
so we’re in the clear! The third box shows us the result of our
analysis overall. Here, our F-value is 21.4 and we have a p-value
of less than 0.01, which means that there is definitely a difference
somewhere between these three conditions.
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Moving on the Post Hoc, each box compares one group with
the other group. So as well can see, no water and some water
are significantly different, and no water and lots of water are
significantly different (remember that stars indicate significance).
We’ve compared conditions 1 and 2 and conditions 1 and 3, but
we still need to compare 2 and 3, so we move down to the next
box and see that some water and lots of water are also significantly
different. Make sure to report all of these differences. To know
which groups are significantly less than or greater than others,
refer to the descriptive statistics at the top (specifically the means).

COMPARING MEANS: INDEPENDENT MEASURES ONE-WAY
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on September 10, 2019.
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CHAPTER 8

Simple Linear Regression

JENNA LEHMANN

A regression can be seen as a kind of extension of a correlation.
When doing a regression, you find a lot of the same outputs, like
Pearson’s r and r-squared. The difference is that the point of a
regression is to also construct a model (usually linear) that will
help us predict values using a line of best fit. In the case of this
example, we will be looking at average hours of sleep students get
and comparing it to their GPA. A regression will also give us a model
(y=mx+b) that would allow us to predict the GPA of a hypothetical
student if we knew the average amount of sleep they get a night.

First, we need to create our variables in Variable View.

Then, we need to input our data into Data View. You can’t see it
in this photo, but I have 25 participants total.
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To start our regression, we need to go to Analyze > Regression >
Linear.
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Once we click that, this pop-up will appear. Make sure to make
your predictor the independent variable and the predicted variable
the dependent variable.
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It may be important for you to then click the Statistics button
and make sure to check what you need to include in your report.
Descriptives and Confidence Intervals never hurt.
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Your output will look something like the following two pictures.
Descriptives are at the top, so this will help you report your means
and standard deviations if you need to. Next are your correlation
matrices. In my case, it looks like Sleep and GPA have a somewhat
strong positive correlation and it appears to be significant with a
p- value of less than .001. Ignoring the variables entered/removed
section, the model summary shows us once again our r value and
it also gives us an r-squared value. The ANOVA table gives us an
F value and significance if we choose to report that. Finally (and
the part we’ve been waiting for) is the model. This part is like in
Algebra when you needed to learn about linear functions. We’re
constructing a line using y=mx+b where the m is the slope and the
b is the y-intercept. For this example, the model we’re working with
is y=0.11x+.418 and I found these numbers from the coefficients
table.
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Now let’s say you need a graph of this. Go to Graphs > Legacy
Dialogues > Scatter Plot.
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This pop-up should appear. Just click Simple Scatter.

Another pop-up should appear. Make sure your predictor is on
the x-axis and the predicted variable is in the y-axis.
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You should end up with this basic scatterplot of your points.
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To get the line of best fit, right-click the graph > Edit Content > In
Separate Window.

A new editing pop-up will appear. Click the linear equation button
at the bottom of the bar. It will say Add Fit Line at Total when you
hover over it.
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Once that’s done, your graph should look something like this. If
you exit out of the pop-up to go back to the output, the output
graph should represent the changes you made in the editor pop-
up.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on February 11, 2020.
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CHAPTER 9

Correlations

JENNA LEHMANN

A correlation requires at least 2 continuous variables. We need to
first define our variables in Variable View. In this case, we’re looking
at how number of absences relates to grade point average.

Next, we type in our data points in Data View.
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To run the analysis, go to Analyze > Correlate > Bivariate.
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A pop-up should appear. Put both of your variables in the
Variables column.
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Then, go to options and click means and standard deviations if
that is something you need to report.
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Your output should look something like this. The correlations
matrix looks a little redundant, but what’s important here is the
Pearson Correlation value and the significance. You should have
everything you need here to report a correlation. For information
about how to do a scatter plot, please visit the SPSS Regression
chapter.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on February 13, 2020.

74 JEREMY BOETTINGER



PART II

STATISTICS

This section contains chapters about statistics-related topics. A link
to the original blog post is included at the bottom of each chapter.
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CHAPTER 10

Introduction to Statistics Basics

JENNA LEHMANN

Whether this is your first statistics class or whether you’re just in
need of a refresher, there are a few basic statistical principles which
are necessary for one to understand before moving forward.

Understanding Populations and Samples

Populations are the groups of people that we are interested in
studying. This can be the entirety of people with depression, an
entire town, or dog-owners. Populations can vary in size but are
typically very large. They are almost always impossible to study
in their entirety. Therefore, we select samples from a population.
Although they’re never as diverse as the population, they are
generally representative. However, they provide limited
information and introduce sampling error.

Samples are a subset of the population which as been selected
by various means. A sample is representative when it accounts
for the variability and diversity of the population. For example, a
representative sample of “individuals who attend the University
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of Baltimore” would include a diversity of age groups, race,
educational background, students from different programs, faculty
from multiple departments, staff, etc., in their appropriate
percentages in the population. A non-representative sample in that
case would not account for the various differences that exist
among the individuals in a population, or would over-represent/
under-represent a specific group. The figure below illustrates a
hypothetical population, two examples of non-representative
samples, and one representative sample of that population.

Created by Dan Kernler and shared under a CC BY-SA 4.0 License

Why do we care about these distinctions? What we really care
about is getting an answer that most closely represents a
population. A non-representative sample introduces bias and
error, and precludes researchers from making sound
interpretations. But since we can’t study entire populations, we
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want to take samples and study them as best as we can to
generalize the results to the population. Samples are not going to
be exactly representative of a population so it’s best to know the
distinction.

Why can’t researchers study entire populations? As we
mentioned before, populations are usually extremely large, and it
would require a lot of time and resources (e.g. financial resources)
to study it in its entirety. Furthermore, in a hypothetical world
where a researcher possesses the resources necessary to do so,
they will not be able to include every single person from the
population in their research study.

Parameters vs Statistics and Sampling Error

A parameter is a value that describes a population, while a
statistic is a value that describes a sample. A good way to
remember it is: Parameter – Population, Statistic – Sample. If the
sample was a good enough sample (completely random and
preferably large), then these values should be very similar.
Sampling error is the discrepancy that exists between a sample
statistic and the corresponding population parameter. Every
sample will have sampling error simply because a sample cannot
possibly be as diverse as a whole population, but there are
measures of preventing a larger one.

How do these things relate to one another? These things all relate
to each other because we select participants from a population
which become a sample, on which we run tests and analysis, and
then we can determine if the results are then generalizable to the
general population we’re studying.
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Sampling Methods

There are a number of ways to collect sample data. There are pros
and cons to each, but simple random sampling reduces sampling
error the most.

• Simple Random Sampling:

◦ Everyone has an equal chance of being selected.

◦ The selection method is completely random.

◦ One individual’s selection does not impact the
likelihood that someone else is subsequently
selected.

• Systematic Sampling:

◦ In a lost of all the individual, every nth individual
is picked.

• Convenience Sample:

◦ Using the first individuals a surveyor comes
across for the sample.

◦ Least likely to get a representative sample.

• Cluster Sampling:

◦ Dividing the population into groups (usually
geographically).

◦ The clusters themselves are randomly selected
while the people in them are not.

• Stratified Sampling:

◦ Divides the population into groups based on
characteristics.

◦ A sample is taken from each of these groups so
that characteristics that are important are
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accounted for.

Variable Types and Individuals

A variable is a characteristic or condition that changes or has
different values for individuals. In other words, it’s something that
can be manipulated, categorized, or measured. An independent
variable is a variable that is manipulated or decided on by the
researcher. A dependent variable is a variable which is not to be
manipulated, but instead observed. For example, if one is trying to
see whether plants grow faster depending on the type of fertilizer
is used, then the independent variable is the type of fertilizer and
the dependent variable is the growth of the plant.

A categorical variable is a variable which is measured by its
name or category. This could be color (red, green, blue, etc.),
gender (man, woman, nonbinary, etc.), or in the case of our coffee
example, whether the coffee is meant to be served hot or cold.
Although we might assign each of these categories a number in
SPSS or excel, these numbers have no quantitative value and are
just replacements for the names. Here is a Khan Academy video
which may be helpful to you in understanding this concept:
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=56

An individual is an object or person that is described by a set
of data. So if we were measuring the height and weight of 15
participants, each of those participants would be an individual in
the study. If we were looking at the different coffees on a menu and
we gathered data on whether each drink is hot or cold, how many
calories is in each drink, how much sugar is in each drink, and how
much caffeine is in each drink, then each of the different kinds of
coffee would be considered individuals in this study.
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Types of Statistics & Types of Studies

Descriptive statistics are used to summarize, organize, and
simplify data (basically it lets us turn data sets into something
legible). Inferential statistics are techniques that allow us to make
generalizations about the population from a sample (so this is
actually comparing groups to see if there are statistical differences
between them or comparing variables to see if there are
relationships between them). There are two types of data
structures that make use of these kinds of statistics.

Data Structure I: Measuring two variables for each individual
Correlational method: Measuring two variables for each

individual in order to determine if there is a significant relationship
between the two. A limitation of this method is that it can show
a relationship, but not an explanation for the relationship. A
correlation does not necessarily mean a causation and is never
enough to draw such an inference.

Data Structure II: Comparing two or more groups of scores
Experimental Method: The goal is to demonstrate a cause and

effect relationship between two variables. The experiment
attempts to show that changing the value of one variable causes
changes to occur in the second variable. This requires:

• Manipulation: The researcher manipulates one variable
by changing its value from one level to another. A second
variable is observed to determine whether the
manipulation causes changes to occur

• Control: The researcher must exercise control over the
research situation to ensure that other, extraneous
variables do not influence the relationship being
examined. These variables that need to be controlled can
be participant variables (characteristics such as age,
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gender, and intelligence that vary from one individual to
the other) or environmental variables (lighting, time of
day, weather, etc.). Researchers should control for as
many variables as they can, and so spend a lot of time
designing an experiment about what variables are
important to control for and how to go about doing that.

Non-experimental Method (Nonequivalent groups and pre-post
studies): This is when the experimenter is unable to fully
manipulate the independent variable. For example, when gender
is studied, one can’t assign participants to be a random gender.
Researchers also have no control over time, and so pre-post tests
are also not true experiments. What is meant by this is that a
variable is measured twice (pre and post), and researchers can’t
control which they measure first – it must be the pre.

Constructs

Constructs are internal attributes or characteristics that can’t be
directly observed but are useful for describing and explaining
behavior. The construct is a proposed attribute of a person that
often cannot be measured directly, but can be assessed using a
number of indicators or manifest variables (for example,
depression). We tend to use an operational definition for
constructs, which describe a set of operations for measuring the
construct and defines a construct in terms of the resulting
measurement. Here is a helpful YouTube video for explaining this
concept:
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=56

Scale Types

A scale is a way in which to categorize and/or quantify variables.
Each type of scale may have a combination of magnitude, equal
intervals, absolute 0, or none. Magnitude means that the scale
specifies if each marker has relative value to the other markers.
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Equal intervals means that a one point difference carries the same
weight throughout the scale and that there is a linear relationship
among the variables. Absolute 0 just means that the 0 on the scale
means the complete absence of that thing. The different types of
scales are as follows:

• Nominal: Set of categories; no quantitative distinction
(Ravens, Steelers, etc.)

• Ordinal: Categories in an ordered sequence ( 1st place vs.
4th place. We don’t know the differences between each
race time, only that this is the order that they came in.)

• Interval: Ordered categories with equal intervals. Arbitrary
zero point (ex. Celsius, 0 could have been placed
anywhere but we decided to place it at the freezing point
of water)

• Ratio: Ordered categories with equal intervals. Absolute
zero point. (ex. Height or weight)
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 4, 2019.
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CHAPTER 11

Frequency Distributions

JENNA LEHMANN

In statistics, a lot of tests are run using many different points of
data and it’s important to understand how those data are spread
out and what their individual values are in comparison with other
data points. A frequency distribution is just that–an outline of
what the data look like as a unit. A frequency table is one way to
go about this. It’s an organized tabulation showing the number of
individuals located in each category on the scale of measurement.
When used in a table, you are given each score from highest to
lowest (X) and next to it the number of times that score appears
in the data (f). A table in which one is able to read the scores
that appear in a data set and how often those particular scores
appear in the data set. Here’s a Khan Academy video we found to
be helpful in explaining this concept:
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=66

Organizing Data into a Frequency Distribution

1. Find the range

2. Order the table from highest score to lowest score, not
skipping scores that might not have shown up in the data
set
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3. In the next column, document how many times this score
shows up in the data set

Organizing data into a group frequency table

1. The grouped frequency table should have about 10
intervals. A good strategy is to come up with some widths
according to Guideline 2 and divide the total range of
numbers by that width to see if there are close to 10
intervals.

2. The width of the interval should be a relatively simple
number (like 2, 5, or 10)

3. The bottom score in each class interval should be a
multiple of the width (0-9, 10-19, 20-19, etc.)

4. All intervals should be the same width.

Proportions and Percentages

Proportions measure the fraction of the total group that is
associated with each score (they’re called relative frequencies
because they describe the frequency in relation to the total number
of scores). For example, if I have 10 pieces of fruit and 3 of them
are oranges, 3/10 is the proportion of oranges. On the other hand,
percentages express relative frequency out of 100, but essentially
report the same values. Keeping in line with our fruit example,
30% of my fruit is oranges. Here’s a YouTube video which might be
helpful:
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=66

Real Limits

Real limits are continuous variables require a calculation of a real
limit. They can be calculated by taking the apparent limit and
subtracting and then separately adding half the value of the
smallest digit available or presented. For example, I have a value of
50 and I want the real limits. To make it easier to see, I make the
number 50.0. The smallest digit shown is the 1 digit, so I subtract
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half of one (49.5) and add half of one (50.5). Sometimes one isn’t
the smallest digit. If I have a value of 34.5, I add another digit to the
end to make 34.50, and the smallest value is the 0.5, so we divide by
2 to get 0.25. So the limits are 34.75 and 34.25. Finally, sometimes
the smallest value of measurement is given. If the smallest unit
a scale can measure is 0.2 pounds, and you have a value of 80
pounds, you add and subtract half of 0.2 pounds and get 80.1 and
79.9. This can be a difficult concept two grasp, so here are two
YouTube videos we found helpful.

An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=66

Frequency Distribution Graphs

A frequency distribution is often best grasped conceptually though
the use of graphs. These graphs are like the tables in that they
represent the same data, but graphs show it in a different way. This
can be done with bar graphs (discrete), histograms (continuous),
or polygons (continuous). Here are two Khan Academy videos we
found helpful.
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An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=66

These graphs can come in a multitude of shapes, but here are
just a few important descriptive words generally used in statistics:

• Symmetrical: When the shape of the distribution is, at
least for the most part, mirrored on both sides if you were
to view the mean as the flipping point.

• Asymmetrical: When the shape of the distribution is not
mirrored on both sides for whatever reason (usually
because of skew).

• Positively Skewed: This is when there is what looks like a
tail of data trailing off to the right. I like to remember this
is as the P in Positive having fallen on its back.

• Negatively Skewed: This is when there is what looks like
a tail of data trailing off to the left.

• Unimodal: This literally means having a buildup of data
around what looks to be one number, so one mode. Your
typical bell curve is unimodal.

• Bimodal: This is when there is data clustering around two
different numbers or spots on the distribution, so having
two modes. This can often look like camel humps.

• Multimodal: When a distribution has two or more
“humps” in the graph.
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Here’s a video which may be helpful in teaching you how to
interpret data presented in a table and organizing data into a
frequency distribution graph.

A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=66
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on on June 4, 2019.
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CHAPTER 12

Measures of Central Tendency

JENNA LEHMANN

Central tendency is a statistical measure; a single score to define
the center of a distribution. It is also used to find the single score
that is most typical or best represents the entire group. No single
measure is always best for both purposes. There are three main
types:

• Mean: sum of all scores divided by the number of scores
in the data, also referred to as the average.

• Median: the midpoint of the scores in a distribution when
they are listen in order from smallest to largest. It divides
the scores into two groups of equal size. With an even
number of scores, you compute the average of the two
middle scores.

• Mode: the most frequently occurring number(s) in a data
set.

Here is a variety of videos to help you understand the concepts of
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these measures, finding the median using a histogram, and finding
a missing value given the mean.

An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=180

There are properties that will change in the mean depending on
how scores are modified. When every score has a number added
to it, the mean also gets the same number added to it (ex. if the
mean is 8 and every score within the distribution as a 3 added to
is, the new mean will be 11). When all the numbers are multiplied
by a something, the mean is also multiplied by that something
(ex. if the mean is 2 and all the numbers in the distribution were
multiplied by 3, the new mean would be 6). When only a few scores
are greater or lower, the mean value follows with it but it needs to
be recalculated.

The following videos detail what happens to the mean and
median when increasing the highest value, the impact that
removing the lowest value has on the mean and median, and
estimating means and medians when given a graph.
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An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=180

Computing Central Tendency Measures

Computing the mean: The mean is pretty straightforward. One
should add up all the values and divide that sum by the number of
values. For example, if I have a data set of 5 (2, 6, 3, 2, 2), I would
add all the numbers up (15) and divide that by 5 to get a mean of 3.

Computing the median: Calculating the median involves lining
up all the scores from smallest to biggest. The middle one is the
median. If there are an even amount of numbers, the average of
the 2 middle numbers is considered the median. Remember that
the purpose of a median is to divide the data in half. When working
with a discrete frequency distribution, please refer to the first video
below. When working with a grouped or continuous frequency
distribution, there are extra steps. Please refer to the second video
included below.
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An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=180

Computing the mode: Mode is the most frequent number which
comes up. Whatever shows up the most in your frequency table,
that’s the mode. There may be more than one mode, so keep this
in mind.

Computing weighted means: Overall mean is the sum of all the
scores of group one plus the sum of all the scores in group two. All
of this is then divided by n1+n2. In some cases you’ll get something
like “group 1 consists of 5 people with an average score of 10 and
group 2 consists of 8 people with an average score of 7.” In this case
you would multiply 5 and 10 and add that to 8 times 7. You would
then divide that number by the total number of people to get the
weighted mean. Here is a helpful video:
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=180

Central Tendency and How they Relate to Distribution Shape

The shape of a distribution can help you determine which measure
of central tendency is greatest.
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• Normal: The mean, median, and mode are all in the same
spot

• Bimodal: The mean and median are together in the
middle, while the two modes are on either side,
represented by the two humps

• Skewed: The mean is going to be closest to the tail,
median is between mean and mode (closer to the tail
than in a normal distribution, but not as close as the
mean), and the mode is found by the hump. This means
that a positively skewed distribution will have a mean
larger than its median and a median larger than its mode,
while a negatively skewed distribution will have a mode
larger than its median and a median lager than its mean.

When to Use Each Measure

In regards to the mean, no situation precludes it, but it shouldn’t
be used when there are extreme scores, skewed distributions,
undetermined values, open-ended distributions, ordinal scales, or
nominal scales. With the median, it’s appropriate to use when there
are extreme scores, skewed distributions, undetermined values,
open-ended distributions, or ordinal scales. It is not to be used
when there is a nominal scale. The mode is good to use with
nominal scales, discrete variables, and in describing shape, but it
shouldn’t be used with interval or ratio data, except to accompany
the mean or median.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 4, 2019.
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CHAPTER 13

Basics of Variability

JENNA LEHMANN

Variability is often a difficult topic for newcomers to statistics
to grasp. Essentially it is the spread of the scores in a frequency
distribution. If you have a bell curve which is pretty flat, you would
say that it has high variability. If you have a bell curve which is
pointy, you would say that it has low variability. Variability is really
a quantitative measure of the differences between scores and
describes the degree to which the score are spread out or clustered
together. The purpose of measuring variability is to be able to
describe the distribution and measure how well an individual score
represents the distribution.

There are three main types of variability:

• Range: The distance between the lowest and the highest
score in a distribution. Can be described as one number
or represented by writing out the lowest and highest
number together (ex. values 4-10). Calculated by
subtracting the highest score from the lowest score. If
you’re working with continuous variables, it’s the upper
real limit for Xmax minus the lower real limit for Xmin.
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• Standard deviation: The average distance between the
scores in a data set and the mean. This value is also the
square root of the variance. Here’s a video to help you
conceptualize this.

A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=188

• Variance: Measures the average squared distance from
the mean. This number is good for some calculations, but
generally we want the standard deviation to determine
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how spread out a distribution is. Calculated with this
equation:

Sample Variance and Degrees of Freedom

Sample variance is just the variance that needs to be calculated
as a substitute sometimes when the population variance is
unavailable (this will be talked about more later). See the first slide
below for a video explaining this more. The degrees of freedom
determine the number of scores in the sample that are
independent and free to vary. This is important because in a
sample, all the data points are allowed to be whatever score, but
the last score needs to be such that the mean we calculated stays
that mean. So if we have 3 scores in a set, and we know the mean
is 5, the first two scores can be any numbers, in this case it’s 9
and 2. Because we calculated that the mean is 5, the last number
has to be 4 to add up to 15 and divide by 3 to get 5. The last
score is dependent on the other scores. Al this means practically
is that the equation of sample variance differs from population
variance in that the denominator is n-1. So n-1 literally means that
all the scores except the “last” one are allowed to be whatever
they want. See the second slide below for a video with some more
explanation.
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An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=188

Biased vs. Unbiased

An unbiased estimate of a population parameter is when the
average value of a statistic is equal to the parameter and the
average value uses all possible samples of a particular size n. A
biased estimate of a population parameter systematically
overestimates or underestimates the population parameter. In this
case, we know that sample variability tends to underestimate the
variability of the corresponding population. We correct this by
using degrees of freedom and we account for this when we use
standard error.

Inferring Patterns in Data

Variability in the data influences how easy it is to see patterns. High
variability obscures patterns in comparing two sets of data that
would be visible in low variability samples. It can’t tell you if there’s
a significant difference between groups, though. You have to run
an analysis of variance or t-test to determine that.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 4, 2019.
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CHAPTER 14

Z-score Basics

JENNA LEHMANN

Standardized Distributions

Sometimes when working with data sets, we want to have the
scores on the distribution standardized. Essentially, this means
that we convert scores from a distribution so that they fit into a
model that can be used to compare and contrast distributions from
different works. For example, if you have a distribution of scores
that show the temperature each day over the summer in Boston,
it may be recorded in Fahrenheit. Someone else in Paris may have
recorded their summer temperatures as well but in Celcius. If we
wanted to compare these distributions of scores based on their
descriptive statistics, we may want to convert them to the same
standardized unit of measurement.

Standardized distributions have one single unit of measurement.
Raw scores are transformed into this standardized unit of
measurement to be compared to one another. Ultimately, they
should look just like the original distribution, the only difference
is that the scores have been placed on a different unit of
measurement.
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Z-Scores

Z-scores are the most common standardized score. They are used
to describe score location in a distribution (descriptive statistics)
and because we can compare scores across distributions, we can
look at the relative standing of a score in a sample or a sample in a
population (inferential statistics). The equation is

In this equation, is the z-score, is the variable you want
to convert, is the mean of the original distribution, and is the
standard deviation of the original distribution.

So, what are the characteristics of a z-score/distributions? In a z-
score the mean is placed at 0 and each number below or above
is a representation of how many standard deviations away a score
is. A 1 represents one standard deviation above the mean and -1
represents one standard deviation below the mean. For example,
if I know that my original mean is 10 and my original standard
deviation is 2, I know that a z-score of 1 would mean 12 and a z-
score of -1 would mean 8. For the purposes of your class, all z-
score distributions are normal distributions. Z-scores aren’t used
on other kinds of distributions because the charts and proportions
are designed to describe normal distributions.
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What’s nice about z-scores is that they can also be used to find
proportions, which will be talked about even more in the next post.
This requires the Unit Normal Table which is a table designed to
help one translate z-scores into proportions of the population on
either side of the score or compared to the mean score. There are
4 columns: one with the z-scores, one with the proportion of the
population in the body of the distribution with the z-score as the
starting point, one with the proportion of the population in the tail
of the distribution with the z-score as the starting point, and one
with the proportion of the population between the z-score and the
mean. It can usually be found in the back of any statistics textbook.
If I have a z-score of -1.5 and I wanted to know the proportion of
the scores which are lower than -1.5, I could go to the back of my
textbook, find -1.50 in the margins, and get the proportion .06681,
meaning that 6.6881% of the data is less than a z-score of -1.5. The
numbers in this table show the reader the proportion of everything
to the left of the z-score in question. If I wanted to know everything
to the right, the proportion would be 1 – 0.06681, which is .93319
or 93.319% of the data.

110 JEREMY BOETTINGER



Z-scores can be used in inferential statistics. Interpretation of
research results depends on determining if the (treated) sample
is noticeably different from the population. The distribution of the
general population would describe the average untreated person,
so this allows researchers to compare that distribution to their
treated sample. Z-scores are one technique for defining “noticeably
different”, but it more like borders on inferential statistics, because
we can’t actually tell if there’s a statistical difference without
running the right test. Z-tests and their purpose in inferential
statistics will be discussed in other posts.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 6, 2019.
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CHAPTER 15

Probability and Sampling

JENNA LEHMANN

Probabilities

A probability is a fraction or a proportion of all the possible
outcomes. So it’s the number of classified outcomes classified as X
divided by the total number of possible outcomes (N). It’s generally
reported as a decimal, but it can also be reported as a fraction or a
percentage.

What is the role of probability in populations, samples, and
inferential statistics? As we discussed before, because it’s usually
impossible for researchers to draw data from the entirety of a
population, they draw samples. The size of the sample affects how
comparable the sample population is to the general population.
Probability is used to predict what kind of samples are likely to
be obtained from a population. Thus, probability establishes a
connection between samples and populations; we know from
looking at the population how likely it is for a specific sample to be
drawn. We also use proportions that exist within samples to infer
the probabilities that exist within a population. Inferential statistics
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rely on this connection when they use sample data as the basis for
making conclusions about populations.

Random Sampling

Random sampling is a process by which researchers pool together
a sample in such a way that it is most likely to be representative
of the population as a whole. While this will never be entirely the
case – since (1) there is always a chance that a sample will be
entirely different from the population and (2) samples inherently
always have less variability than the population – it’s good practice
to follow certain random sampling requirements:

• Independent random sampling: Probabilities must stay
constant from one selection to the next if more than one
individual is selected. In other words, selecting one
individual shouldn’t affect the probability of another
person being selected; their chances are independent of
one another.

• Random sampling with replacement: Each individual in
the population has an equal chance of being selected,
meaning that to keep the denominator of the probability
equation (X/N) the same for each draw, the first draw
needs to be returned to the population pool.

Proportions in Frequency Distributions

Proportions can be represented in frequency distributions, and
this was briefly touched on in another blog post about z-scores.
A selected section of a frequency distribution represents a
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proportion of the population; the selected area under the curve
represents a proportion of the population. Because normal
distributions are symmetrical and the same shape, just stretched
out differently, we can use z-scores to standardize the scores and
use a unit normal table to determine what proportion of the
population is on either side of that score. The area under the curve
literally becomes a proportion. We also know that in a normal
distribution, more extreme scores are less likely to occur, since
most scores will build up near the mean. The proportions of ranges
of scores closer to the mean are greater than the proportions of
scores in the ranges near the tails of the distribution.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on on June 6, 2019.
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CHAPTER 16

Distribution of Sample Means

JENNA LEHMANN

Up until this point, as far as distributions go, it’s been about being
able to find individual scores on a distribution. Moving into
hypothesis testing, we’re going to switch from working with very
concrete distributions with scores to hypothetical distributions of
sample means. In other words, we’re still working with normal
distributions, but the points that make up the distribution will no
longer be individual scores, but all possible sample means which
can be drawn from a population with a given or number of
scores in them.

We use these kinds of distributions because with inferential
statistics we’re going to want to find the probability of acquiring
a certain sample mean to see if it’s common or very rare and
therefore perhaps significantly different from another mean.

There are some concepts you will have to keep in mind for this
shift including sampling error, the central limit theorem, and
standard error.
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Sampling Error

Sampling error is the natural discrepancy, or amount of error,
between a sample statistic and its corresponding population
parameter. So each sample is different because you’re likely
drawing separate samples from the same population; you hope to
get a diverse group, but you don’t really get to pick what you get,
and you’re not likely to get the exact same group twice. Samples
can’t be entirely representative of a population and always have
less variability than the population. So even though we take a
sample in order to run statistics that can be generalized back to the
population, there is always going to be some error.

Central Limit Theorem

The central limit theorem is a set of rules that dictate how a
distribution of sample means will look given certain criteria. For any
population with mean and standard deviation , the distribution
of sample means for sample size will have a mean of and
a standard error of (which we will talk about more in a
minute) and will approach a normal distribution as n approaches
infinity. So this practically means that the distribution of sample
means is almost perfectly normal in either of two conditions: the
population from which the samples are selected is a normal
distribution or the number of scores in each sample (also known as
sample size) is relatively large (around 30 or more). The central limit
theorem also mentions that as n increases, variability decreases.
In other words, the greater the sample n, the pointer your
distribution.

These videos will help your understanding:
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An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=202

Standard Error

The standard error provides a measure of how much distance
is expected on average between a sample mean and the
population mean . Essentially, it’s the standard deviation of
sample means from the mean of sample means. It specifies
precisely how well a sample mean estimates its population mean.
The magnitude of the standard error is determined by two factors:
the size of the sample and the standard deviation of the population
from which the sample is selected. We can see by the equation

that the greater is, the greater its square root and the
more that the standard deviation will have to be divided by, making
the standard error smaller. But if the population standard deviation
is already small, that will make the standard error small too.

Inferential Statistics

Inferential statistics are methods that use sample data as a basis
for drawing general conclusions about populations, and as
mentioned before, are the reason why we’re learning about
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distributions of sample means. It’s important to know how much
a sample differs from the population because we can’t draw many
conclusions about the population from a sample that is very
different. The error is important to keep in mind too when creating
a control group. If a study with treated and untreated patients is
to be generalized to the general population, you don’t just want to
know if there was a significant difference between the two groups,
but you want to make sure that the untreated group represents the
general population.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 6, 2019.
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CHAPTER 17

Introduction to Hypothesis
Testing

JENNA LEHMANN

What is Hypothesis Testing?

Hypothesis testing is a big part of what we would actually consider
testing for inferential statistics. It’s a procedure and set of rules
that allow us to move from descriptive statistics to make inferences
about a population based on sample data. It is a statistical method
that uses sample data to evaluate a hypothesis about a population.

This type of test is usually used within the context of research.
If we expect to see a difference between a treated and untreated
group (in some cases the untreated group is the parameters we
know about the population), we expect there to be a difference
in the means between the two groups, but that the standard
deviation remains the same, as if each individual score has had a
value added or subtracted from it.
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Steps of Hypothesis Testing

The following steps will be tailored to fit the first kind of hypothesis
testing we will learn first: single-sample z-tests. There are many
other kinds of tests, so keep this in mind.

• Step 1: State the Hypothesis

◦ Null Hypothesis (H0): states that in the general
population there is no change, no difference, or
no relationship, or in the context of an
experiment, it predicts that the independent
variable has no effect on the dependent variable.

◦ Alternative Hypothesis (H1): states that there is
a change, a difference, or a relationship for the
general population, or in the context of an
experiment, it predicts that the independent
variable has an effect on the dependent variable.

• Step 2: Set the Criteria for a Decision

◦ Alpha Level: Also known as Level of
Significance, is a probability value that is used to
define the concept of “very unlikely” in a
hypothesis test. We chose an alpha level in order
to separate the most unlikely sample means
from the most likely sample means. Ex.

that means that we’re separating
the most unlikely 5% from the most likely 95%.
The largest permissible value of alpha is 0.05,
although some researchers like to use more
conservative alpha levels to reduce the risk that a
false report is published. But you don’t want the
value to be too conservative because otherwise,
you might run the risk of a Type II error, in which
case the hypothesis test demands more evidence
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from the research results, in which case you
might be throwing out evidence that a treatment
will work.

◦ Critical Region: Composed of the extreme
sample values that are very unlikely to be
obtained if the null hypothesis is true.
Determined by alpha level. If sample data fall in
the critical region, the null hypothesis is rejected,
because it’s very unlikely they’ve fallen there by
chance.

• Step 3: Collect Data and Compute Sample Statistics

◦ After collecting the data, we find the sample
mean. Now we can compare the sample mean
with the null hypothesis by computing a z-score
that describes where the sample mean is located
relative to the hypothesized population mean.
We use the z-score formula.

• Step 4: Make a Decision

◦ We decided previously what the two z-score
boundaries are for a critical score. If the z-score
we get after plugging the numbers in the
aforementioned equation is outside of that
critical region, we reject the null hypothesis.
Otherwise, we would say that we failed to reject
the null hypothesis.

Regions of the Distribution

Because we’re making judgments based on probability and
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proportion, our normal distributions and certain regions within
them come into play.

As mentioned before, Alpha Level, also known as Level of
Significance, is a probability value that is used to define the
concept of “very unlikely” in a hypothesis test. We chose an alpha
level in order to separate the most unlikely sample means from the
most likely sample means. Ex. that means that we’re
separating the most unlikely 5% from the most likely 95%

The Critical Region is composed of the extreme sample values
that are very unlikely to be obtained if the null hypothesis is true.
Determined by alpha level. If sample data fall in the critical region,
the null hypothesis is rejected, because it’s very unlikely they’ve
fallen there by chance.

These regions come into play when talking about different errors.
A Type I Error occurs when a researcher rejects a null hypothesis

that is actually true; the researcher concludes that a treatment has
an effect when it actually doesn’t. This happens when a researcher
unknowingly obtains an extreme, non-representative sample. This
goes back to alpha level: it’s the probability that the test will lead to
a Type I error if the null hypothesis is true.

A Type II Error occurs when a researcher fails to reject the null
hypothesis that is really false; this means that the hypothesis test
has failed to detect a real treatment effect. This happens when the
sample mean is not in the critical region even though the treatment
has had an effect on the sample. Usually, this means that the effect
of the treatment was small, but it’s still there. The probability of a
Type II error is represented by beta
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A result is said to be significant or statistically significant if it is
very unlikely to occur when the null hypothesis is true. That is, the
result is sufficient to reject the null hypothesis. For instance, two
means can be significantly different from one another.

Factors that Influence and Assumptions of Hypothesis Testing

Assumptions of Hypothesis Testing:

• Random sampling: it is assumed that the participants
used in the study were selected randomly so that we can
confidently generalize our findings from the sample to the
population.

• Independent observation: two observations are
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independent if there is no consistent, predictable
relationship between the first observation and the
second.
The value of σ is unchanged by the treatment; if the
population standard deviation is unknown, we assume
that the standard deviation for the unknown population
(after treatment) is the same as it was for the population
before treatment. There are ways of checking to see if this
is true in SPSS or Excel.

• Normal sampling distribution: in order to use the unit
normal table to identify the critical region, we need the
distribution of sample means to be normal (which means
we need the population to be distributed normally and/or
each sample size needs to be 30 or greater based on what
we know about the central limit theorem).

Factors that influence hypothesis testing:

• The variability of the scores, which is measured by either
the standard deviation or the variance. The variability
influences the size of the standard error in the
denominator of the z-score.

• The number of scores in the sample. This value also
influences the size of the standard error in the
denominator.

Test statistic: indicates that the sample data are converted into a
single, specific statistic that is used to test the hypothesis (in this
case, the z-score statistic).

Directional Hypotheses and Tailed Tests

In a directional hypothesis test, also known as a one-tailed test,
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the statistical hypotheses specify with an increase or decrease in
the population mean. That is, they make a statement about the
direction of the effect.

The Hypotheses for a Directional Test:

• H0: The test scores are not increased/decreased (the
treatment doesn’t work)

• H1: The test scores are increased/decreased (the
treatment works as predicted)

Because we’re only worried about scores that are either greater
or less than the scores predicted by the null hypothesis, we only
worry about what’s going on in one tail meaning that the critical
region only exists within one tail. This means that all of the alpha is
contained in one tail rather than split up into both (so the whole 5%
is located in the tail we care about, rather than 2.5% in each tail).
So before, we cared about what’s going on at the 0.025 mark of the
unit normal table to look at both tails, but now we care about 0.05
because we’re only looking at one tail.

A one-tailed test allows you to reject the null hypothesis when
the difference between the sample and the population is relatively
small, as long as that difference is in the direction that you
predicted. A two-tailed test, on the other hand, requires a relatively
large difference independent of direction. In practice, researchers
hypothesize using a one-tailed method but base their findings off
of whether the results fall into the critical region of a two-tailed
method. For the purposes of this class, make sure to calculate your
results using the test that is specified in the problem.

Effect Size

A measure of effect size is intended to provide a measurement of
the absolute magnitude of a treatment effect, independent of the
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size of the sample(s) being used. Usually done with Cohen’s d. If you
imagine the two distributions, they’re layered over one another.
The more they overlap, the smaller the effect size (the means of
the two distributions are close). The more they are spread apart,
the greater the effect size (the means of the two distributions are
farther apart).

Statistical Power

The power of a statistical test is the probability that the test will
correctly reject a false null hypothesis. It’s usually what we’re
hoping to get when we run an experiment. It’s displayed in the
table posted above. Power and effect size are connected. So, we
know that the greater the distance between the means, the greater
the effect size. If the two distributions overlapped very little, there
would be a greater chance of selecting a sample that leads to
rejecting the null hypothesis.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 11, 2019.
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CHAPTER 18

Introduction to the t-statistic

JENNA LEHMANN

Z-tests vs. t-tests

Z-tests compare the means between a population and a sample
and require information that is usually unavailable about
populations, namely the variance/standard deviation. Single
sample t-tests compare the population mean to a sample mean,
but only require one variance/standard deviation, and that’s from
the sample. This is where estimated standard error comes in. It’s
used as an estimate of the real standard error, when the value of

is unknown. It is computed using the sample variance or sample
standard deviation and provides an estimate of the standard
distance between a sample mean, , and the population mean,

, (or rather, the mean of sample means). It’s an “error” because
it’s the distance between what the sample mean is and what it
would ideally be since we would rather have the population
standard deviation. The formula for estimated standard error is

.

The formula for the t-test itself is:
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with the bottom portion referring to the estimated standard
error. You may see this written as instead.

Degrees of Freedom

Degrees of freedom describe the number of scores in a sample
that are independent and free to vary. Because the sample mean
places a restriction on the value of one score in the sample, there
are degrees of freedom for a sample with n scores. For a single
sample t-test, the degrees of freedom are calculated using the
following formula: .

Shape of a t-distribution

One general rule of t-distribution is that it’s always slightly flatter
than it’s corresponding normal distribution. This is because t-
statistics are always working from a sample size, which is relatively
small, rather than a population, which are generally large.

There are some factors which also influence the shape of each
individual t-distribution:

• The degrees of freedom: The greater n is, and
subsequently df, the more like a normal distribution the t-
distribution will begin to look (this also follows the 30 rule)

• The sample variance: The bottom half of the equation
deals with the estimated standard error, which changes
when the standard deviation changes. Because the ESE is
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dependent on the sample variance, each sample can
create a different ESE

Hypothesis Testing with a Single Sample t-test

The written null and alternative hypotheses for a single sample t-
test are as follows:

H0 : = population mean
H1 : \neq population mean
The stops for a single sample t-test are as follows:

1. State the hypotheses and select an alpha level

2. Locate the critical region

3. Calculate the test statistic

4. Make a decision regarding the null hypothesis

The following are some assumptions one makes when doing a
single sample t-test:

• The values in the sample must consist of independent
observations.

• The population that is sampled must be normal.

Effect Size for Single Sample t-tests

Effect size for a single sample t-test is calculated using Cohen’s
d. The formula for this is the mean difference over the standard

deviation, or . Effect size is important because it’s a way
of quantifying the difference between two groups, rather than just
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saying that there is a significant difference. Essentially, it’s also
important to know how much of a difference there is, not just
the likelihood that the group differences you’re seeing are a fluke
because the null hypothesis is actually true. This can also be
important for practical significance. If your treatment is statistically
significant, but has a small effect size, is it worth using this
treatment on clients?

For Cohen’s d, 0.2 would be considered a small effect size, 0.5 is
medium, and 0.8 is large. Some people will mix words together like
“small to medium effect size” but some professors will want you to
just pick a side.

Confidence Intervals

Confidence intervals are a range of values which is likely to
encompass the true value you’re looking for. More specifically, it’s a
range we create using a sample that we can say with X% confidence
that the population mean falls within that range. Confidence
intervals are constructed at a confidence level, such as 95%,
selected by the user. It means that if the same population is
sampled on numerous occasions and interval estimates are made
on each occasion, the resulting intervals would bracket the true
population parameter in approximately 95% of the cases.
Confidence intervals and any kind of interval estimation are used in
the same situations that you would use hypothesis testing. There is
an estimation procedure for every kind of hypothesis test.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 11, 2019.
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CHAPTER 19

Independent t-tests

JENNA LEHMANN

We have talked about single sample t-tests, which is a way of
comparing the mean of a population with the mean of a sample
to look for a difference. With two-sample t-tests, we are now trying
to find a difference between two different sample means. More
specifically, independent t-tests involve comparing the means of
two samples which are distinctly different from one another in
regards to the individuals within each sample. For example, a group
of pet owners vs. a group of folks who don’t own pets. These two
groups are completely independent of one another. This distinction
will be important in a later post.

A more technical explanation of the difference between a single
sample and two-sample is that a single sample t-test revolves
around drawing conclusions about a treated population based on
a sample mean and an untreated population mean (no standard
deviation). An independent sample t-tests are all about comparing
the means of two samples (usually a control group/untreated
group and a treated group) to draw inferences about how there
might be differences between those two groups in the broader
population

133



There are some distinct advantages and disadvantages to this
approach when compared to other approaches. To avoid
confusion, we won’t describe the other approaches here but will
just mark the advantages and disadvantages of this one here for
your consideration:

Advantages:

• Gives the opportunity to conduct an experiment with very
little contamination by extraneous factors.

• Lowers the chance of participants suffering from
boredom after a long series of tests as well as skewing the
results by becoming more accomplished through practice
experience.

Disadvantages:

• Can be complex.

• Requires a large number of participants.

• Needs a new group for every treatment and
manipulation.

• Confounding variables brought in by the individuals in the
study can weaken results.

Hypothesis Testing with Independent t-tests

The null and alternative hypotheses for this kind of test are as
follows:

(no difference in the population
means)

(there is a mean difference)
Steps of calculating an independent samples t-test (from this
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point forward, if there is a larger formula you’re looking for, see our
formula guide glossary):

1. Calculate the estimated standard error by calculating
pooled variance and figuring out the degrees of freedom
for each group.

2. Subtract the two means from one another (we assume
that the difference between the population means will be
0 given the null hypothesis) and then divide by the
standard error.

3. Determine the critical region based on your alpha level
and whether you’re running a one or two-tailed test. Then
decide whether your calculated t-test falls within the
critical region or not.

4. Make a decision about the null hypothesis based on this
comparison.

Assumptions of independent sample t-tests:

• The observations within each sample must be
independent.

• The two populations from which the samples are selected
must be normal.

• To justify using the pooled variance, the two populations
from which the samples are selected must have equal
variances (homogeneity of variance); essentially the
standard deviation of after treatment should be very
similar to the standard deviation presented before
treatment. This can be confirmed using SPSS or Excel.
This can also be done using Hartley’s F-max test, which is
described later on in this chapter.
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Estimated Standard Error and Pooled Variance

To calculate the estimated standard error, you need to first
calculate pooled variance, especially because not all treatment or
non-treatment groups will have the same number of scores, and so
you need to weight in both groups before coming to terms with the
overall estimated standard error. Remember that the estimated
standard error is how we calculate the standard error when there’s
no population mean to go off of.

In essence, the steps for calculating a t-test by hand are:

1. Find the sum of squares of each sample.

2. Calculate the pooled variance given the sums of squares
you just found and the degrees of freedom ( for
each sample).

3. Calculate the estimated standard error using that pooled
variance.

4. Plug the estimated standard error into the t-test formula
and solve for .

Effect Size of Independent Samples t-test

We use Cohen’s d to get effect size. For this particular test, it’s mean
1 minus mean 2 all divided by the square root of the pool variance
calculated earlier. In this case, instead of comparing the effects
of a sample to the population (asking, is this practically significant
rather than just statistically significant?), we’re comparing the
effects of two different samples.
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Hartley’s F-Max Test

Hartley’s F-max test is a statistical test to evaluate the
homogeneity assumption. To compute, you need to compute the
sample variance of each sample individually. Then, you need to
make a fraction with the biggest variance on top and the smallest
one on the bottom. Finally, compute. The F-max value computed
for the sample data is compared with the critical value found in an
F-max table. If the sample value is larger than the table value, then
you can conclude that the homogeneity assumption is not valid.

If you’re looking for more help on learning the concept of the
independent samples t-test or how to calculate it, check out this
series of videos (each one about five minutes long):

An interactive or media element has been excluded from this version of the text.

You can view it online here:

https://ubalt.pressbooks.pub/mathstatsguides/?p=216

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 11, 2019.
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CHAPTER 20

Repeated Measures t-test

JENNA LEHMANN

A repeated measures or paired samples design is all about
minimizing confounding variables like participant characteristics by
either using the same person in multiple levels of a factor or pairing
participants up in each group based on similar characteristics or
relationship and then having them take part in different
treatments. Matched subjects is another word used to describe
this kind of test and it is used specifically to refer to designs in
which different people are matched up by their characteristics.
Participants are often matched by age, gender, race,
socioeconomic status, or other demographic features, but can also
be matched up on other characteristics the researchers might
consider possible confounds. Twin studies are a good example of
this kind of design; one twin has to be matched up with the other –
they can’t be matched to someone else’s twin.

To reiterate the differences between a repeated measures t-test
and the other kinds of tests you may have learned up to this point,
a single sample t-test revolves around drawing conclusions about
a treated population based on a sample mean and an untreated
population mean (no standard deviation). An independent sample
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t-tests are all about comparing the means of two samples (usually
a control group/untreated group and a treated group) to draw
inferences about how there might be differences between those
two groups in the broader population. Different, randomly
assigned participants are used in each group. Related samples t-
tests are like independent sample t-tests except they use the same
person for multiple test groups or they match people based on
their characteristics or relationships to cut down on extraneous
variables which may interfere with the data.

Mean Difference and Estimated Standard Error of the Mean
Difference

The mean difference is calculated by subtracting the two scores
collected from each person (because there are two testing groups),
adding all of those differences up, and then dividing that number
by the number of scores. This is done because rather than just
compare means between the two samples, like in an independent
samples t-test, we have the opportunity to first calculate the
difference between each individual to see how the treatment
affected them.

The estimated standard error of the mean difference is a
measure of how much the mean difference might vary from one
occasion to the next. This is different from independent measures
because instead of pooling variance between two samples, you
base your sum of squares on the difference between the two
scores and then calculate the estimated standard error like you
would a single sample t test.

Hypothesis Testing with Repeated Measures t-tests

The null and alternative hypothesis are written as follows:
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or that there is no difference between the two
conditions

or that there is a significant difference between
the two conditions

Steps for calculating a repeated measures t-test (all formulas
needed can be found in the statistics formula glossary):

1. State the null and alternative hypothesis

2. Locate the critical region (remember that the is
)

3. Calculate the t statistic using the t formula after
calculating the estimated standard error of the mean
difference.

4. Make a decision.

Once again, there are some advantages and disadvantages to using
this approach.

Advantages:

• Fewer subjects needed

• Is well-suited for studying changes over time
(developmental, learning, studying)

• Reduces or eliminates caused by individual differences
within the participants by either linking participants up
based on characteristics or by using the same person
twice.

Disadvantages:

• Increases the likelihood that outside factors that change
over time may be responsible for changes in the
participants’ scores.

• Participation in the first treatment could affect scores in
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the second treatment (practice, fatigue, etc.).

Effect Size for Repeated Measures t-tests

Once again, Cohen’s d is the effect size measurement of choice. In
this case, it’s the sample mean difference over the sample mean
deviation (so whatever you found as the variance, square root that
to get the sample mean deviation).

Variability as a Measure of Consistency

If a treatment consistently adds a few points to each individual’s
score, then the set of difference scores are clustered together on
a normal distribution curve with relatively small variability. In this
situation, with small variability, it is easy to see the treatment effect
and it is likely to be significant. High variability means that there’s
no consistency with a treatment effect, meaning that it’s harder to
see that there’s any difference between groups and it’s unlikely that
a significant difference will be found.

Degrees of Freedom

Before, when we were working with independent t-tests, the
degrees of freedom was for each sample, so in the end, it
was . However, for a repeated measures t-test, we’re only
needing degrees of freedom for the mean difference. Therefore,
the total degrees of freedom is simply .

REPEATED MEASURES T-TEST 141



This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 11, 2019.
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CHAPTER 21

Independent One-Way ANOVA

JENNA LEHMANN

An ANOVA (ANalysis Of VAriance) is a test that is run either to
compare multiple independent variables with two or more levels
each, or one independent variable with more than 2 levels. You can
technically also run an ANOVA in the same cases you would run a
t-test and come up with the same results, but this isn’t common
practice, as t-tests are easier to compute by hand.

For the purposes of this post, a One-way ANOVA is a test which
compares the means of multiple samples (more than 2) which are
connected by the same independent variable. An example of this
might be comparing the growth of plans who receive no water
(Group 1) a little water (Group 2), a moderate amount of water
(Group 3), and a lot of water (Group 4).

A factor is another name for an independent variable. As
mentioned earlier, ANOVAs can sometimes have more than one
factor, but for now we’re only working with one, just like we have
before. A level is a group within that independent variable. Using
the example from before, the groups in which the plants are put in
are the levels (no water, little water, some water, a lot of water) and
the independent variable itself is just water amount.
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Experiment-wise Alpha

A question you might be asking yourself is, why bother doing an
ANOVA when I can just do multiple t-tests? This is because the
risk of a Type I error that accumulates as you do more and more
separate tests. Doing multiple t-tests would result in greater
experiment-wise alpha and therefore experiment-wise error. In a
lot of ways its better to just do one big ANOVA to look for
differences and then decipher those differences later using a post-
hoc, which will be discussed later.

Hypothesis Testing with One-way ANOVAs

The null and alternative hypotheses for a one-way ANOVA are as
follows (please keep in mind that 3 is not the maximum number
of means that can be compared so write your hypotheses
accordingly):

Essentially, the point is whether there will or won’t be a significant
difference between the groups, or at least two of them.

Steps for calculating a one-way ANOVA (please refer to the
statistics formula glossary for actual formulas):
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Variability in One-Way ANOVAs

There are multiple kinds of variability found within the calculation
of an ANOVA. There is between-treatment variance and within-
treatment variance. The between-treatment variance can be
further broken down into systematic treatment effects and
random, unsystematic factors. The within-treatment variance
only accounts for random, unsystematic factors in this case.

The purpose of calculating within-treatments variance is to
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determine how much of the between-treatment variance was due
to random, unsystematic factors and how much was due to
treatment effects.

There is a conceptual meaning underlying the ANOVA formula.
The numerator is meant to represent the differences between
sample means and the denominator is meant to represent the
differences between samples expected with no treatment effect.
This is basically between-treatments variance (the general
differences between treatment conditions) and within-treatment
variance (the variability within each sample).

Assumptions of a one-way ANOVA

• The observations within each sample must be
independent.

• The population from which the samples are selected must
be normal.

• The populations from which the samples are selected
must have equal variance (homogeneity of variance).

Effect Size in One-Way ANOVAs

Effect size is now calculated with something called partial eta

squared. The formula for this is:
, or the sum of squares of the between treatments over the sum of
squares total.

Post-Hoc Test

A post-hoc test allows one to figure out which groups are
significantly different from one another once a significant F-ratio
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has been established. This is better than just running individual t-
tests because post hoc still reduce experiment-wise error. There
are several options for conducting a post-hoc, but two more
popular options are Tukey’s and Scheffe’s tests. Tukey’s test
calculates a single value that determines the minimum difference
between treatment means that is necessary for significance.
Scheffe’s test uses an F-ratio to evaluate the significance of the
difference between the two treatment conditions. Formulas for
both of these tests are in the statistics formula glossary.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 11, 2019.
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CHAPTER 22

Repeated Measures ANOVA

JENNA LEHMANN

Just like when we talked about independent samples t-tests and
repeated measures t-tests, ANOVAs can have the same distinction.
Independent one-way ANOVAs use samples which are in no way
related to each other; each sample is completely random, uses
different individuals, and those individuals are not paired in any
meaningful way. In a repeated measures one-way ANOVA,
individuals can be in multiple treatment conditions, be paired with
other individuals based on important characteristics, or simply
matched based on a relationship to one another (twins, siblings,
couples, etc.). What’s important to remember that in a repeated
measures one-way ANOVA, we are still given the opportunity to
work with multiple levels, not just two like with a t-test.

Advantages:

• Individual differences among participants do not
influence outcomes or influence them very little because
everyone is either paired up on important participant
characteristics or they are the same person in multiple
conditions.
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• A smaller number of subjects needed to test all the
treatments.

• Ability to assess an effect over time.

Disadvantages:

• Increases the likelihood that outside factors that change
over time may be responsible for changes in the
participants’ scores.

• Participation in the first treatment could affect scores in
the second treatment (practice, fatigue, etc.).

Hypothesis Testing with Repeated Measures One-Way ANOVA

The null and alternative hypotheses for a repeated measures
ANOVA are as follows:

Assumptions of repeated measures one-way ANOVAs are as
follows:

• The observations within each treatment condition must
be independent.

• The population distribution within each treatment must
be normal

• The variances of the population distribution for each
treatment should be equivalent

The steps to calculating a repeated measures one-way ANOVA are
explained in this chart.
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See below for a useful video. Please remember that different
disciplines use different versions of the same equations; don’t let
this intimidate you. Just use what you have been given by your book
or professor.
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=231

There is a conceptual meaning underlying the process of
calculating this. There are more sums of squares to consider
because we’re doing our best to separate within differences from
between differences but also distinguishing which within
differences are due to individual differences between the subjects
and what error can’t be accounted for by individual differences. So
instead of basing an F-ratio on the balance of between treatment
differences and any error that could ever take place, we reduce
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the error being used to calculate whether there’s a significant
difference by getting rid of the kind of error we can measure with a
repeated measures design: participant differences. See the graphic
below for a visual representation of this concept.

Effect Size

Effect size, in this case, is calculated once again using partial eta
squared:

Be careful not to accidentally plug in the wrong value, as these
names all sound similar to one another. The numerator should be
the between treatments sum of squares gotten in the first step of
the calculation. The denominator is the total sum of squares minus
the between-subjects sum of squares found in the second round of
calculations.
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Post Hoc Tests

Like we mentioned in the previous post, post hoc tests are tests
run to determine which groups are significantly different from one
another after determining through the ANOVA that there’s a
significant difference somewhere. Is the significant difference
between A and B, B and C, C and A, or all three? For repeated
measures one-way ANOVAs, Tukey’s HSD and Scheffe can be used,
just substitute SSerror and dferror in the formulas. These formulas
can be found on the statistics formula glossary post.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 18, 2019.
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CHAPTER 23

Two-Factor ANOVAs

JENNA LEHMANN

So far we’ve talked about tests which are used if there is one
independent variable, either with two levels or more. This is not
the limit of how much we can include in a single analysis. In a
two-factor ANOVA, there is more than one independent variable
and each of those variables can have two or more levels. Take this
example into consideration:

A farmer wants to know the best combination of products
to use to maximize her crop yield. She decides to test out
three different fertilizer brands (A, B, and C) and two
different kinds of seeds (Y and Z). Each product is paired
once with another for a total of 6 conditions: AY, BY, CY, AZ,
BZ, CZ.

A two-factor ANOVA considers more than one factor and
considers the joint impact of factors. This means that instead of
running a new study every time you want to see how an
independent variable affects a specific dependent variable, you
can run an experiment with two different independent variables
and seeing how they each impact the dependent variable and you
get to see if the two independent variables do anything together
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to affect the dependent variable. These are called main effects
and interactions. Keeping the example going, if we find that no
matter what the seed type is that fertilizers A, B, and C resulted
in different crop yields from one another, we would say there is a
main effect for fertilizer type. If no matter what the fertilizer type
is there is a difference between the crop yields of seeds Y and Z,
we would say that there is a main effect for seed type. If there
are times that the two factors influence each other (for example,
let’s say that fertilizer worked much better specifically when paired
with Y seeds), we would say there’s an interaction. The defining
characteristic of an interaction is when the effect of one factor
depends on the different levels of a second factor or the impact of
another factor, either amplifying or reducing the effect based on
the level.

Meaning of the Equation Before the ANOVA

Often times when reading a paper which uses a multiple factor
ANOVA, there is a little equation before it like 2×2 or 4x5x2 or
something along those lines. These equations may look confusing
and intimidating, but there is a simple way to read these. The
number of numbers in the equation tells you how many factors
there are. For instance, a 2×3 ANOVA simply has two factors
because there are only two numbers presented. A 4x5x7x2x3x4
ANOVA, although this equation looks ridiculous, simply has six
factors in it because there are six numbers present. The actual
values of each number tell you how many levels are in each factor.
A lot of papers make sure to define which factors they’re
considering first, but simply put, a 2×3 ANOVA has two factors
and the first factor has two levels while the second has three.
A 4x5x7x2x3x4 ANOVA has six factors, the first has four levels,
the second has five, the third has seven, the fourth has two, the
fifth has three, and the sixth has four. This author has personally
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never come across an ANOVA so convoluted in a paper, but this
example was just meant to show that although it’s easy to get
caught up in the sheer volume of numbers, interpreting them is
not so complicated. Also remember that it’s the author’s job in an
article to interpret the results for you, so that should help.

Hypothesis Testing with Two-Factor ANOVAs

For an ANOVA with only two factors (which is all you’ll likely need to
master), there are three different null and alternative hypotheses
to consider. One is for the first main effect, one is for the second
main effect, and one is for an interaction. Don’t forget to include as
many means as there are levels.

Null:

H0: There is not an A X B interaction
Alternative:

H1: There is an A X B interaction
The following are the steps and stages needed to calculate a two-

factor ANOVA. Please keep in mind that the formulas needed for
these calculations exist in the statistics formula glossary post.

• First Stage:

◦ Is identical to independent samples ANOVA

◦ Compute the ,
, and

• Second Stage:
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◦ Calculate , ,
, , , and

.

• Third Stage:

◦ The goal is to partition the
into three separate

components

◦ Calculate , , and . In other
words, calculate the parts of

which can be
attributed to main effect one, main effect two,
and an interaction.

• Fourth Stage:

◦ Calculate , , , and
.

• Fifth Stage:

◦ Calculate , , and

◦ These are the numbers which you use to
determine if there is a main effect one ,
main effect two , and/or an interaction

.

• Sixth Stage:

◦ If there is a significant main effect that has three
or more levels, this is when you would conduct a
post-hoc analysis for that factor alone. This
would be no different than one done for a one-
way ANOVA.

The conceptual meaning behind these calculations is that we’re
dividing up the variance between the treatments so that we know
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the differences between the levels of factor A, the differences
between the levels of factor B, and then the differences due to an
interaction between the factors.

The assumptions of a two-factor ANOVA are as follows:

• The observations within each sample must be
independent of each other.

• The populations from which the samples are selected
must be normally distributed.

• The populations from which the samples are selected
must have equal variances.

Effect Size

Once again we’re using partial eta squared, but this time we’re
calculating it thrice – once for main effect one, once for main effect
two, and once for an interaction. The formulas for these are
relatively simple and can be found in the statistics formula glossary
post.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 18, 2019.
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CHAPTER 24

Introduction to Correlation and
Regression

JENNA LEHMANN

So far we’ve been talking about analyses which involve variables
which are split up into categorical or discrete variables (ex.
treatment A, B, C) compared to a dependent variable which is
continuous (ex. plant height). However, there is a way to look at two
variables which have continuous data: correlation. A correlation
will tell you the characteristics of a relationship such as direction
(either positive or negative), form (we often work with linear
relationships), and strength of the relationship. Strength and
direction can be understood with the number which is given at the
end of an analysis .

A positive correlation is one in which the increased value of
one variable results in the increased value of another. For example,
height and weight – as height increased, weight also tends to
increase. A negative correlation is one in which the increased
value of one variable results in the decrease of another. For
example, as the temperature outside increases, hot chocolate sales
will decrease. This is what is meant by the direction of a correlation.
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An r-value with a negative sign in front of it means a negative
correlation and one without a negative sign means a positive
correlation.

R-values exist on a plane between -1 and 1. The closer a number
is to 1, the stronger its positive relationship. The closer a number is
to -1, the stronger its negative relationship. The closer a number is
to 0, the weaker its relationship, no matter if its negative or positive.

Created by Spiritia and shared under a CC BY-SA 3.0 License

Pearson Correlation

The most common type of correlation used is the Pearson
Correlation. It measures the degree and direction of the linear
relationship between two variables. It will measure a perfect linear
relationship. Every change in variable has a corresponding
change in variable . The possible range of an r-value is between
-1 and 1. is calculated in the following way: = covariability /
variability of and separately.

There are some important factors to take into consideration
when using and interpreting the Pearson Correlation.

1. Correlation does not demonstrate causation. This is
something very important to remember; just because two
variables have a correlation doesn’t mean that one is
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causing the other. There may be another factor that
we haven’t measured which may be the real reason. Take
into account that when ice cream sales go up, so do the
number of drownings in an area. Does that mean that ice
creams are causing people to drown? Consider that
maybe increased temperatures result in more ice cream
consumption as well as an increase in the number of
people who are going out swimming. You can never know
if there’s a third lingering factor with just a correlation.

2. The value of the correlation is affected by the range of
scores in the data. For example, if you’re looking at how
height and age correlate, if your sample is just made up of
people who are 20 or older, you probably will get a weak
correlation, as most adults no longer grow. However, if
your sample is 17 or younger, you’re likely to find a decent
positive correlation.

3. Extreme points (outliers) have an impact. Data points
which vary greatly from the others may sometimes need
to be removed as their presence affects the correlation.

4. Correlation cannot be interpreted as a proportion.

Coefficient of Determination

The coefficient of determination is a measurement of the
proportion of variability in one variable that can be determined
from the relationship with the other variable (r squared). In other
words, it’s used to analyze how differences in one variable can be
explained by a difference in a second variable. The example given
by Statistics How To is that when you get pregnant has a direct
relation to when they give birth. Link to the whole article here. This
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measure is usually reported along the lines of this: “75% of the
variation in can be explained by the variation in .”

Other Types of Correlation

While Pearson Correlation is the most commonly used, there are
times when the data one collects warrants the use of a different
kind of correlation. Some are listed below:

• Partial correlation: A partial correlation measures the
relationship between two variables while controlling the
influence of a third variable by holding it constant.

• Spearman correlation: Used when both variables are
measured on an ordinal scale; Used when the
relationship is consistently directional but may not be
linear.

• Point-biserial correlation: Measures relationship
between two variables when one variable has only two
values (dichotomous value)

• Phi-coefficient: Both variables are dichotomous. Both
variables are re-coded to values 0 and 1

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 18, 2019.
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CHAPTER 25

Introduction to Linear Regression

JENNA LEHMANN

Linear regression is a method for determining the best-fitting line
through a set of data. In a lot of ways, it’s similar to a correlation
since things like and are still used. The one difference is
that the purpose of regression is prediction. The best-fitting line
is calculated through the minimization of total squared error
between the data points and the line.

The equation used for regression is or some
variation of that. If you remember from algebra class, this formula
is like . This is because they are both the linear
equation. Although you may be asked to report and , the
purpose of regression is to be able to find values for the slope
and the y-intercept that creates a line that best fits through the
data.

Standard Error of the Estimate

Regression equations make a prediction, and the precision of the
estimate is measured by the standard error of the estimate. The
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standard error of the estimate is a measure of the accuracy of
predictions made with a regression line and has to do with how
wide the data points are scattered (strength of the correlation). In
other words, it tells you how far away the points tend to be from
the prediction line.

Here is a playlist of videos that may be helpful
12

:

1. Longstreet, D. [statisticsfun]. (2012, February 5). An Introduction to Linear
Regression Analysis [Video]. YouTube. https://www.youtube.com/
watch?v=zPG4NjIkCjc&list=PLF596A4043DBEAE9C&index=1

2. Longstreet's resources available through his "statistics fun" channel is
extensive. While the title may be off-putting, "My Book Sucks" is an incredibly
useful CC-BY licensed resource: https://www.youtube.com/user/statisticsfun/
about
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=244

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 18, 2019.
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CHAPTER 26

Discrete Probability Distributions

JASON GREEN

Discrete versus Continuous Variables

A discrete variable typically originates from a counting process
while a continuous variable usually comes from a measuring
process. An easy way to make the distinction between a discrete
and a continuous variable is that discrete variables are usually
whole numbers with no decimals. Continuous variables on the
other hand frequently take the form of decimals. For instance, the
number of people which exist within a group is a discrete variable
because it’s always a whole number, while a person’s weight would
be continuous since it can typically be measured to multiple
decimal places.

The Probability Distribution for a Discrete Variable

A probability distribution for a discrete variable is simply a
compilation of all the range of possible outcomes and the
probability associated with each possible outcome. Since,
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probability in general, by definition, must sum to 1, the summation
of all the possible outcomes must sum to 1. For example, if you’re
flipping a coin once, there’s a 1 in 2 chance it will land on heads,
and a 1 in 2 chance it will land on tails; 1/2 + 1/2 = 1. In this
way, measuring probability is similar to the use of percentages.
Percentages are always measured out of 100 while probability is
always measured out of 1. This is true for all probability
measurements.

Expected Value for a Discrete Variable

The expected value for a discrete variable is essentially the same as
the population mean. In this way, the expected value is calculated
simply by finding the product of each possible outcome and its
associated probability and doing a summation at the end.

Standard Deviation and Variance of a Discrete Variable

Standard deviation is basically a measure of how much each data
point varies away from the mean; it’s also often described as the
spread of the distribution. Quantitatively, the standard deviation
is simply the square root of variance. This quantitative definition
confirms the fact that variance must always be a positive number
since numerically the evaluation of standard deviation would be
impossible otherwise. Conversely, the standard deviation can be
both positive and negative as each data point can be both above
and below the mean value. Standard deviation and variance as
concepts are also discussed in an earlier post called Basics of
Variability.
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Binomial Distribution

The binomial distribution is a type of mathematical model.
Mathematical models allow us to easily calculate the probability
of occurrence of any specific value of the variable of interest. The
binomial distribution is used in situations where the discrete
variable is the number of occurrences in a sample of n
observations.

There are 4 properties of the Binomial Distribution:

1. The sample must consist of a fixed number of
observations,

2. Each and every observation can be categorized into one
of two mutually exclusive and collectively exhaustive
categories

3. The probability of an event of interest, , is constant
across all observations. Therefore the probability of a
non-event of interest, (sometimes called ) is
constant for all observations.

4. Observations are all independent. This simply means the
probability of occurrence of any observation is not
dependent on any other observation.

The Binomial distribution formula:

And
= probability that events of

interest, where and are as follows:
= number of observations
= probability of an event of interest (prob.of success)
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= probability of not having an event of interest
(prob. of failure)

= number of events of interest (no. of successes) in the sample
( = 0,1,2, …, )

= The number of combinations of events of interest

out of observations. This calculation does not take into account
the order in which the events actually occur. If the order was
important, that would involve calculating a permutation, not a
combination. Here is a video depicting the calculation of
combinations:
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A YouTube element has been excluded from this version of the text. You can view it online

here: https://ubalt.pressbooks.pub/mathstatsguides/?p=264

Another version of this formula which may be easier to read can be
found in the Statistics Formula Glossary.

When conducting calculations for binomial distributions, there
are three distinct possibilities that may be encountered.

Example: There are 10 golf balls in a bag, consisting of 6
orange balls and 4 yellow balls. If we define success as the
likelihood of picking an orange ball and therefore failure as
not picking an orange ball (and therefore picking a yellow ball),
we can illustrate the three distinct possibilities that may be
encountered in calculations.

If 6 golf balls are to be selected at random (without
replacement):

• What is the probability of picking exactly 4 orange balls?

And
= probability that events of

interest, when and
= number of observations = 6
= probability of an event of interest = 6/10 = 0.6

= prob. of not having an event of interest = 0.4
= number of events of interest (no. of successes) in the

sample ( = 0,1,2, …, ) = 4
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• What is the probability of picking at least 4 orange balls?

This equates to: prob. of 4 orange + prob. of 5 orange + prob.
of 6 orange

• What is the probability of picking less than 4 orange balls?

This equates to: prob. of 0 orange + prob. of 1 orange + prob.
of 2 orange + prob. of 3 orange

Prob. of at least 4 orange balls

Mean of the Binomial Distribution

The mean, ℳ, of the binomial distribution is the product of the
sample size, , and the probability of an event of interest (success),

.
ℳ
This is the value that is statistically most likely to occur. For

instance, consider the example of tossing two unbiased dice, the
range of values that may result extends from 2 to 12. The mean
value is actually 7. This is because there are six distinct ways to
get a value of 7. They are 1& 6, 6 & 1, 2 & 5, 5 & 2, 3 & 4, and
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4 & 3. This represents 6 distinct possibilities out of a total of 36
possibilities, which is the most likely result to occur from all the
distinct possibilities.

Standard Deviation of the Binomial Distribution

The standard deviation of the binomial distribution, , is the square
root of the variance.

Poisson Distribution

The Poisson distribution is another type of mathematical model.
The Poisson distribution applies when we want to determine the
number of occurrences of a particular event in some fixed interval
of time and space. This fixed interval of time and space is often
called an area of opportunity. Within the area of opportunity, there
can be multiple occurrences of an event.

There are 4 properties of the Poisson Distribution:

1. The area of opportunity must be defined by time, length,
surface area etc. Per the Poisson distribution, we can
determine the number of times a particular event occurs
in a given area of opportunity.

2. The probability that an event occurs in a given area of
opportunity must be the same for all the areas of
opportunity.

3. The number of events that occur in each and every area
of opportunity is independent of the number of events
that occur in any area of opportunity
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4. The probability that two or more events will occur in any
area of opportunity approximates to zero as the area of
opportunity becomes smaller.

The Poisson distribution formula:

where
= probability that events in an area

of opportunity given
= expected number of events per unit
= mathematical constant approximated by 2.71828
= number of events ( )

Example: Imagine that the mean number of cars that pass an
intersection in a 1-minute interval is 5.0.

• What is the probability that in a given minute, exactly four
cars will arrive?

• What is the probability that more than four cars will arrive in
a given minute?

The probability that more than four cars will arrive:

4) = P (X = 4) + P (X = 5) + P (X = 6) + \cdots +" title="Rendered
by QuickLaTeX.com" height="22" width="512" style="vertical-
align: -6px;">

Since all probabilities in a distribution sum to 1:
4) = 1 - P(X <= 4)"
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title="Rendered by QuickLaTeX.com" height="22"
width="261" style="vertical-align: -6px;">

Some of the material in this post was obtained from Statistics for
Managers: Using Microsoft Excel, Eighth Edition.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on July 1, 2019.
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CHAPTER 27

Statistics and Excel: Evaluating
Normality

JENNA LEHMANN

Evaluating Normalcy

Many statistical tests run on the assumption that the data with
which you are working is normally distributed, so it’s important to
check. There are several different ways to go about this. This post
will explain a few different methods for testing normalcy as well as
provide some instructions about how to run these tests in Excel.

Mean vs. Median

An important rule to note about distribution is that in a normal
distribution, the mean, median, and mode are approximately
equal. What it looks like visually is that the mean, median, and
mode are all sitting at the top of the hump of the bell curve. When
a distribution is skewed, these values become different. The mode
will always sit around the hump of a distribution (because this
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is where most of the values have accumulated). The mean is the
measure of central tendency most affected by extreme variables
and outliers, so it will follow the longest tail. The median, in this
case, will always fall somewhere between the median and the
mode. Put another way, if the distribution is positively skewed, the
mean will be the greatest value, the median will be the second
greatest value, and the mode will be the smallest value. If the
distribution is negatively skewed, the mean will be the smallest
value, the median will be the second smallest value, and the mode
will be the greatest value. So when you’re looking at a data set,
you may be able to get an idea of the skew of the distribution by
comparing the mean and the median.

The easiest way to get all of the descriptive statistics you need
in Excel is to download Analysis ToolPak. To do this go to:
File>Options>Add-ins>Analysis ToolPak. Make sure to then hit
GO in the bottom right, and then click the check-mark next to
Analysis ToolPak before hitting OK. These directions are good for
PC, but Mac users may need to find a different route for including
Add-ins.

Once there, go to Data>Data Analysis. From there, you should
see this pop-up.

176 JEREMY BOETTINGER



From there, click Descriptive Statistics, select your input range,
select an output range, click Summary Statistics, and then click OK.

Your output should look something like this. You should be able
to see the mean, standard deviation, median, mode, range,
minimum, maximum, etc. These will all be helpful in future
normalcy tests.
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Range and Interquartile Range vs Standard Deviation

Another two questions which should be asked when comparing
mean and median are, “Is the range approximately six times the
standard deviation?” and “Is the interquartile range approximately
1.33 times the standard deviation?” Given the descriptive statistics
we just ran, the first question should be easy to answer. Simply
multiply the standard deviation by 6 and check to see if it is close
to the range. Interquartile range is the difference between the first
quartile and the third quartile, which are not given to you when
you run the descriptive statistics. One way to find the first and
third quartiles is by using the =QUARTILE function. When using
this function, highlight the data, punch in a coma, and then put in
the number quartile that you are interested in (1 or 3). It should
look like this: =QUARTILE(A2:A:20,1). Find the difference between
the two and compare this to the standard deviation multiplied by
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1.33. If either of these results show wildly different results than
expected, you should consider that the data may be skewed.

Boxplot

A boxplot is a quick way to see if the data you’re working with are
symmetrical. To create a boxplot in Excel, highlight your data and
go to Insert >Recommended Charts > All Charts > Box & Whisker.
If the plot looks to be symmetrical, your data are likely normal. If
one of your box sides or whiskers stretch out farther than the rest,
your data may be skewed. More specifically, if your whisker extends
out in the direction of the larger numbers, your data are positively
skewed. If your whisker extends out to the smaller numbers, your
data are negatively skewed. Below is an example of each.
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Histogram

Histograms are a good way to visually check the normalcy of large
amounts of data. When evaluating it, the shape of the bars should
represent a bell-curve. If not, then the data may be skewed or
multimodal. To create a histogram, highlight your data and go to
Insert > Recommended Charts > All Charts >Histogram. When you
first create the histogram, it may look a little wonky. To fix this,
click the new chart, and a green plus sign should appear. Click this,
hover over Axes, and move your cursor to the right until a black
arrow appears. Click this, then click More Axis Options, and a bar
should appear on the right side of your screen which will allow you
to adjust your bin width and bin number.

Empirical Rule

Although there is no simple way to use the empirical rule to test
to see if your data are normally distributed, if you did want to take
that route, the rules are as follows:

• Two-thirds of the data lie within ±1 standard deviations of
the mean

• Four-fifths of the data lie within ±1.28 standard deviations
of the mean

• 19 of every 20 data points lie within ± 2 standard
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deviations of the mean

If one were to do this in Excel, one might create a frequency
distribution with these standard deviations as the bins and
compare those frequencies with these rules. This can be done
using the Histogram feature of Data Analysis.

Normal Probability Plot (Q-Q Plot)

A normal probability plot (otherwise known as a quantile-quantile
or Q-Q plot) is a way to visualize data normalcy. Steps on how to
create one in Excel are as follows:

• Step 1: Order the data from least to greatest

• Step 2: Find the expected quantile z-scores. This is done

using the following equation: where is the

number of data points and is the ordered value. The
smallest number would have an ordered value of 1, the
second smallest would have an ordered value of 2, and so
on and so forth.

• Step 3: Finally, you can highlight the data and the z-scores
(make sure the two columns are next to each other), go to
Insert, and create a scatterplot with the data. If the line is
straight, then the data is normally distributed. If the line
curves upward, the data is positively skewed. If the line
curves downward, the data is negatively skewed.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on February 4, 2020.
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CHAPTER 28

Statistics Formula Glossary

JENNA LEHMANN

This chapter includes a glossary of formulas that may be helpful to
keep around when practicing statistical problems for homework or
studying for an upcoming test.

PDF version: Stats-Formula-Glossary-7_16_2019
Word (.docx) version: Stats-Formula-Glossary-7_16_2019
Please keep in mind that although these formulas work, they may

not be the versions that your professors have taught you to use. It
may also be that this formula sheet has formulas for problems you
don’t need to know how to solve for the purposes of your class. If
this is the case, we encourage you to download the Word version so
that you may add to, subtract from, or edit the glossary to fit your
own individual needs.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on June 30, 2019.
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PART III

ALGEBRA AND
CONCEPTS

This section contains chapters about algebra and basic
mathematical concepts. A link to the original blog post is included
at the bottom of each chapter.
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CHAPTER 29

Introduction to Exponents and
Polynomials

JENNA LEHMANN

Evaluating Exponential Expressions

When working with exponents, it might be more helpful to think of
them as multiple instances of multiplication. Some exponents are
going to be more straight-forward, but be careful of the writing of
some exponents.

Let’s take a look at some examples of evaluating exponential
expressions:

In the expression below, this is an illustration of what we mean
when we say that an exponent is like multiple multiplications. The
exponents signify the number of times that the number 2 should
be multiplied by itself.

In the next expression, the -3 is in parentheses. This means that
the exponent outside of the parentheses needs to be applied to the
number as a whole, including its being negative.
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In this last expression, the exponent is sitting right next to the 3
without any parentheses holding the negative and the 3 together.
In this case, think of it as though a -1 needs to be multiplied by
3 which is then multiplied by 3. No matter what the exponent is
in this case, the answer will always be negative because a -1 is
being multiplied to whatever number comes out of evaluating the
exponent.

Using the Product Rule

When multiplying two or more of the same variable with exponents
(meaning they have the same base number or letter), it’s as if you’re
adding the exponents together. Below is a visualization of why that
is. If we stretch out the expression so that each x is being multiplied
by itself the proper number of times, it’s as if we added the 2 and 3
exponents to one another.

It’s important to remember, however, that you can only simplify
expressions this way if the base number or variable is the same. In
the example below, although it looks very complex, if we separate
all numbers without exponents and all the different variables by
type, we can easily achieve a simplified version of the expression.

•

•

So the answer is
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Power of a Quotient Rule

The power of a quotient rule is that when a fraction exists within
parentheses and is met with an exponent, everything within the
parentheses is affected by the exponent. This includes any
numbers which are attached to variables as well.

Quotient Rule for Exponents

If multiplying numbers with exponents is like adding the exponents
together, then dividing is like subtracting the exponents.

Zero Exponent

For any number that has an exponent of 0, that number is always
translated to 1. Try to keep this in mind as you start to deal with
more complex equations involving exponents, as an equation can
be better cleaned up by immediately translating a number or
variable with an exponent of 0 to just be the number 1.
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Negative Exponents

Negative exponents ask that the variable be flipped into (or
sometimes out of) a fraction when translated. In the first example
below, the x has to be flipped over into a denominator in order to
get rid of the negative sign on its exponent. In the other, the x has
to be flipped over to the numerator to get rid of the negative. In this
case, however, the one in the denominator can be removed and the
x no longer has to be part of a fraction.

Scientific Notation

Scientific notation is a process used to make either very big or
small numbers easier to read. To translate a number into scientific
notation, count the number of spaces it would take to get the first
non-zero digit to become the one’s digit and then multiply that
number by 10 to the number of digits moved. Here we can see an
example. We have the number 0.000003. Simply start your pencil at
the decimal and then create a bump around each 0 until you get to
the other side of the number 3. Then, count the number of bumps.
Remember that if you’re translating a big number to be smaller, the
exponent next to the 10 should be positive. If you’re translating a
small number to be bigger, the exponent next to the 10 should be
negative.
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What is a Polynomial?

A polynomial is an equation which is created through the use of
two or more algebraic terms. In the example below, each color
represents a different term.

Polynomials can be made up of some or all of the following:

• Variables: the letters in the equation

• Constants: In the example above, the constant would be
the 11. It’s a number that does not contain any modifiable
variables.

• Exponents: These are the numbers that you’ll typically
find attached to variables

• Addition, subtraction, multiplication, and division

What isn’t Considered a Polynomial?

While a polynomial can appear in many different ways, there are
some rules about what is not considered a polynomial. A
polynomial is NOT:

An equation which contains division by a variable.

An equation that contains negative exponents.

An equation that contains fractional exponents.
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An equation that contains radicals.

Evaluating Polynomials

Evaluating polynomials is just like solving any other math problem;
make sure to use the order of operations. The order of operations
is abbreviated to PEMDAS, which stands for Parentheses,
Exponents, Multiplication and Division, and Addition and
Subtraction. To start, just plug the value for x or whatever letter
you’re working with and then use the order of operations until you
get your most simplified answer. Check out the example below:

• Evaluate when

• Step 1: Substitute

◦

• Step 2: PEMDAS

◦

• Step 3: PEMDAS

◦

• Step 4: PEMDAS

◦

Adding Polynomials

When adding polynomials, keep in mind that you can only add
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together like terms. The like terms are highlighted in different
colors in the example below. Don’t be intimidated by the
parentheses when adding – just add like you normally would.

Subtracting Polynomials

Just like when adding polynomials, only like terms can be
subtracted from one another. However, in this case, you do need to
keep the parentheses in mind because of the minus side to the left
of the second polynomial. Treat the minus sign like a -1, as if you
were about to multiply everything in the parentheses by -1. This
means that everything that was once positive will be negative and
vice versa.

INTRODUCTION TO EXPONENTS AND POLYNOMIALS 193



Polynomials with Two Variables

Don’t get distracted by the new variable! The rules from before still
apply. Just be sure to separate each type of number by the base
and then simplify.

Multiplying Monomials

When working in equations that involve variables, multiplying two
of the same variable results in an “addition” of exponents. For
equations that simply have an “x” or “y,” imagine there’s a 1
exponent above it.
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Multiplying Monomials by Polynomials

When multiplying monomials by polynomials, it’s important to
multiply the monomial term by every term within the polynomial.

Using FOIL

When multiplying two different polynomials, remember to FOIL.
First, multiply the two First variables in each polynomial. Then,
multiply the Outside variables together. Next, multiply the Inside
variables. Finally, multiply the Last variable of each polynomial.
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Multiplying Binomials

When multiplying binomials, it’s important to remember that each
term of the first binomial should be multiplied with each term of
the second.
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Multiplying Larger Polynomials

Don’t be intimidated by the added numbers. Just keep in mind
that each variable needs to be multiplied by the other variables
at some point. With larger polynomials like this one

, I typically just go from left to
right:

.
Check out the example below.
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Dividing Polynomials by Monomials

Dividing a Polynomial by a Monomial of often easier when one
breaks it up into smaller pieces.

Dividing a Polynomial by Another Polynomial

Solve

Step 1: Rewrite in descending powers and include missing
variables ( )

Step 2: Long divide, asking yourself “what number multiplied by
2x would equal the number I’m focusing on?”
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Step 3: Write the remainder out dividing it by the original
polynomial

Thus,

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on September 13, 2019.
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CHAPTER 30

Factoring Polynomials

JENNA LEHMANN

Finding the Greatest Common Factor (GCF)

Finding the greatest common factor simply involves finding the
largest number or term which will fit evenly into each number
or term in a list. The way I like to go about this is by breaking
each number or term into its smallest parts. Break each number
down until you are multiplying together only prime numbers. All
the numbers that they have in common should then be multiplied
back up to create the GCF.

This is what it would look like in a list of numbers:

•

•

• The greatest common factor is .

And this is what it would look like in a list of terms:

•

•
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•

• The greatest common factor is

Sometimes, you will have to factor out the GCF in a function. In this
case, treat each term like an individual and follow the instructions
mentioned above. Then, whatever the GCF is, divide each term by
that GCF, rewrite the function, and make sure to place the GCF
outside of a parenthesis which contains the new function.

•

◦

◦ ; 2 is the greatest common
factor

• The final answer is

Factoring by Grouping

• Step 1: Group the terms in two groups of two terms so
that each group has a common factor.

• Step 2: Factor out the GCF from each group.

• Step 3: If there is a common binomial factor, factor it out.

• Step 4: If not, rearrange the terms and try these steps
again.

• Step 5: Make sure to check your work by multiplying
(FOIL-ing) your answer to see if you can get back to the
original problem.

•
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•

•

Factoring Trinomials of the Form

Sometimes trinomials can be factored into two binomials. It helps
to make a chart in order to find the correct pairs of numbers.
The pairs of numbers to go into (x+_)(x+_) depend on whether the
sum of a pair of factors for the third term is equal to the number
presented in the second term.

Factoring Trinomials of the Form

Step 1: Split the first term to and .

•
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Step 2: Find all possible factors of the third term.

• or

Step 3: Test Factors. This first one creates the wrong middle
number.

•

•

This one also doesn’t work. Just keep testing. Sometimes, you will
try everything and it still doesn’t quite work. Try splitting ax
differently. In this case, 3 can only be split into 3 and 1, but if you’re
working with 6, for example, you could try splitting it into 6 and 1 or
2 and 3.

•

Step 4: Finally, this set works. Make sure to check your work by
FOIL-ing.

•

Factoring Out the GCF with Polynomials

Sometimes before we can even begin to factor a polynomial, we
have the ability to factor out a common factor of all 3 terms. In the
example below, notice all the numbers have a GCF of , we can
start by factoring it out.

From there, we can continue to factor as we normally would.
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Factoring Trinomials of the Form by
Grouping

We can also use the grouping method for trinomials. Take the
example problem below.

We can rewrite this so that there is an even number of terms, as
shown here:

We want to find a factor of 24 (because 2 from the first term
multiplied by 12 of the third term) that also adds up to 11.

Now that we have our middle numbers, we can group.

Now we’ll factor out the greatest common factors within each
group. It looks like we have a common binomial in each group.

So our end product is:

Factoring Perfect Square Trinomials and the Difference of Two
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Squares

Decide whether is a perfect square trinomial
Two terms and are squares
Twice the product of and is the final term of the trinomial

Thus, is a perfect square trinomial
This means that it can easily be factored to

Factoring the Difference of Two Squares

When both terms in a binomial are squares (meaning that they are
a variable which includes a square or a number which can be evenly
square-rooted) and the signs of the terms are different, one can
use the following equation to factor it:

For example,

Solving Quadratic Equations by Factoring

Factoring can also be used to solve quadratic equations, like so:

•

•

• , and so

• , and so
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So the solutions to this quadratic equation are 11 and -2.
If the equation has a degree greater than two, it can be solved by

factoring and then using the method above.

•

•

•

• , means

• , means

• , means

So the solutions are 0, 2, and -2.

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on September 25, 2019.
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CHAPTER 31

Rational Expressions and
Equations

JENNA LEHMANN

What is a Rational Expression?

A rational number is a number that can be written as a quotient of
integers. In other words, it’s any number that can create a nice and
neat fraction. A rational expression is also a quotient, it’s just made
up of polynomials. A rational expression can be written in the form
P/Q. For example:

or or

Evaluating Rational Expressions

Rational expressions have different numerical values depending on
what values replace the variables. For example:
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If then

If then

Identifying When a Rational Expression is Undefined

When the denominator of a rational expression is 0, then it is
undefined. There are some equations in which the denominator is
sometimes 0 and some in which the denominator is never 0. Take
the following equation as an example.

When we set to equal 0, we find that when is 3,
the denominator is 0. So when is 3, the rational expression is
undefined.

The denominator of the above equation is never 0, and so it is
never undefined.

Sometimes you will need to factor the denominator to find the
variables which make it undefined, like in the following example.

and
So when equals 2 or 1, the expression is undefined.

Simplifying Rational Expressions

Sometimes a fraction made of polynomials can be simplified. This
can be done by taking out the greatest common factor, like in the
example below.
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This may also be done by factoring the polynomials in both the
numerator and denominator.
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Multiplying Rational Expressions

Multiplying rational expressions follow the same rules as
multiplying other kinds of fractions. The numerator of one fraction
is multiplied by the numerator of the other, and the denominator
of one fraction is multiplied by the other.

This goes for polynomials as well. Just be sure to FOIL when
necessary.
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Dividing Rational Expressions

Remember that dividing fractions is the same thing as flipping the
second fraction and multiplying.

This is also true for polynomials. Again, don’t forget to FOIL when
necessary.

Adding and Subtracting Rational Expressions with the Same
Denominator

When adding and subtracting with rational expressions that have
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the same denominator, all you have to worry about is adding and
subtracting what’s in the numerator.

This is true for any kind of term that may be in the numerator or
denominator.

or

Finding the Least Common Denominator

Finding the least common denominator involves breaking each
number up into its smallest variables and seeing how those
numbers compare so that the smallest number that they both fit
into appears. Take a look at the example below. 8 can be broken
up into 2*2*2 and 6 can be broken up into 2*3. We need a number
that satisfies the need for all of these numbers, even if a few
overlap. The solution to this is 2*2*2*3. It incorporates the 8’s need
to have 3 2’s and the 6’s need to have a 2 and a 3. 2*2*2*3 = 24 so
our LCD is 24.

This also works with variables. We’re working with 5x and 15x^2.
We need to find a number that fulfills the need of a 5 and an x as
well as a 5, a 3, and 2 x’s. The equation 5*x*x*3 fulfills all of those
needs. So our LCD is 15x^2.
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Writing Equivalent Rational Expressions

When writing equivalent rational expressions, we are, in a sense,
multiplying an expression of 1.

This is useful for when we want to translate one equation to keep
the same value but use a different denominator.

In this case, we have to ask ourselves, “what can I multiply by
in order to get ?”
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Adding and Subtracting Rational Expressions with Different
Denominators

Find the LCD and then multiply one rational expression by what’s
missing from it to get that LCD in the denominator. Make sure to
do this with the other fraction, if necessary, so that in the end, both
fractions have the same denominator – the LCD.

Solving Equations Containing Rational Expressions

Sometimes, you will be asked to solve for a missing variable when
there are equations containing rational expressions. I recommend
doing what is needed so that the denominators of all the numbers
are eliminated and you can work with whole numbers again.
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Another, more complex example would be:

This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on October 7, 2019.
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CHAPTER 32

Mathematical Ideas:
Problem-Solving Techniques

JENNA LEHMANN

Solving Problems by Inductive Reasoning

Before we can talk about how to use inductive reasoning, we need
to define it and distinguish it from deductive reasoning.

Inductive reasoning is when one makes generalizations based
on repeated observations of specific examples. For instance, if I
have only ever had mean math teachers, I might draw the
conclusion that all math teachers are mean. Because I witnessed
multiple instances of mean math teachers and only mean math
teachers, I’ve drawn this conclusion. That being said, one of the
downfalls of inductive reasoning is that it only takes meeting one
nice math teacher for my original conclusion to be proven false.
This is called a counterexample. Since inductive reasoning can
so easily be proven false with one counterexample, we don’t say
that a conclusion drawn from inductive reasoning is the absolute
truth unless we can also prove it using deductive reasoning. With
inductive reasoning, we can never be sure that what is true in a
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specific case will be true in general, but it is a way of making an
educated guess.

Deductive reasoning depends on a hypothesis that is
considered to be true. In other words, if X = Y and Y = Z, then we can
deduce that X = Z. An example of this might be that if we know for a
fact that all dogs are good, and Lucky is a dog, then we can deduce
that Lucky is good.

Strategies for Problem Solving

No matter what tool you use to solve a problem, there is a method
for going about solving the problem.

1. Understand the Problem: You may need to read a problem
several times before you can conceptualize it. Don’t
become frustrated, and take a walk if you need to. It
might take some time to click.

2. Devise a Plan: There may be more than one way to solve
the problem. Find the way which is most comfortable for
you or the most practical.

3. Carry Out the Plan: Try it out. You may need to adjust your
plan if you run into roadblocks or dead ends.

4. Look Back and Check: Make sure your answer gives sense
given the context.

There are several different ways one might go about solving a
problem. Here are a few:

• Tables and Charts: Sometimes you’ll be working with a
lot of data or computing a problem with a lot of different
steps. It may be best to keep it organized in a table or
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chart so you can refer back to previous work later.

• Working Backward: Sometimes you’ll be given a word
problem where they describe a series of algebraic
functions that took place and then what the end result is.
Sometimes you’ll have to work backward chronologically.

• Using Trial and Error: Sometimes you’ll know what
mathematical function you need to use but not what
number to start with. You may need to use trial and error
to get the exact right number.

• Guessing and Checking: Sometimes it will appear that a
math problem will have more than one correct answer.
Be sure to go back and check your work to determine if
some of the answers don’t actually work out.

• Considering a Similar, Simpler Problem: Sometimes
you can use the strategy you think you would like to use
on a simpler, hypothetical problem first to see if you can
find a pattern and apply it to the harder problem.

• Drawing a Sketch: Sometimes—especially with
geometrical problems—it’s more helpful to draw a sketch
of what is being asked of you.

• Using Common Sense: Be sure to read questions very
carefully. Sometimes it will seem like the answer to a
question is either too obvious or impossible. There is
usually a phrasing of the problem which would lead you
to believe that the rules are one way when really it’s
describing something else. Pay attention to literal
language.
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on November 6, 2019.
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CHAPTER 33

Mathematical Ideas: Basic
Concepts of Set Theory

JENNA LEHMANN

Symbols and Terminology

A set is a collection of objects of values that are in this case called
elements or members. They can be described using words, lists,
or set-builder notation.

• Words: a set of odd numbers less than 6

• Listing: {1,3,5}

• Set-builder notation: {x|x is an odd counting number less
than 6}

If a set has no elements, it’s called an empty or null set and its
symbol is Ø. Make sure not to write this as {Ø}, because that is
technically incorrect.

It is important to make sure that a set is well-defined, meaning
that there’s no room for subjective interpretation about whether
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something belongs in a set or not. An example of a well-defined set
is a set of all numbers between 1 and 10. We can say for sure that
5 belongs and 13 doesn’t. A set that is not well defined is a set of all
numbers that are aesthetically pleasing. It’s not clear what would
define aesthetically pleasing so we’re unsure about whether 5 or 13
would fit.

The symbols ∈∈ and ∉∉ are used to describe whether something
is or isn’t an element of a set. Going back to our example of all
numbers between 1-10 (we’ll name this set A) we can say that 5 ∈ A
while 13 ∉ A.

Important Definitions for Sets

Here are some important definitions before moving forward:

• Natural numbers or Counting numbers are all integers
starting at 1: {1, 2, 3, 4,…}

• Whole numbers are all integers starting at 0: {0, 1, 2, 3,
4…}

• Integers are all whole numbers from -∞ to ∞: {… -3, -2, -1,
0, 1, 2, 3…}

• Rational numbers are numbers that can be created by
dividing two integers (like 1/2 or 9/10 or 4/1).

• Real Numbers are any number that isn’t imaginary, so
the typical integer, fraction, or decimal we’re used to. An
imaginary number is when a negative number is square
rooted (√-1)

• Irrational Numbers are decimals that can’t be expressed
as the fraction of two integers. The square root of 2 would
be an example of this because the decimals are ongoing
and there is no discernible pattern to the decimals.
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• A cardinal number is the number of elements in a set
and it is written as n(A) and spoken as “n of A.” So if I was
given set Z = {1, 5, 7, 2, 9, 10}, I would say n(Z) is 6.

• A finite set is a set that has a whole number as its
cardinal number. So we could technically count how many
elements are in a set.

• An infinite set is a set where the number of elements is
infinite and we couldn’t possibly count them.

• Two sets are equal if two conditions are met: (1) every
element of the first set is an element of the second set
and (2) if every element of the second set is an element of
the first one. That being said, it does not matter if the
elements are written in a different order ({a, b, c, d} = {a,
c, d, b}) and repeating elements doesn’t add a new
element ({a, b, a, c, d, d} = {a, b, c, d}).

Venn Diagrams and Subsets

The universe in which we are working, or the area that we’re
concerned within a set, is called the universal set. This consists
of everything in the wider set. Venn diagrams are often used
to discuss commonalities and differences between sets in the
universal set. The universal set is everything within the rectangle
encompassing the Venn diagram including the Venn diagram itself.
The Venn diagram is made up of sets within U and can overlap. Set
A is everything in circle A, set B is everything in circle B, and where
they overlap are all the elements that they have in common.
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Complements of a set are everything that a set is not. The
complement of A is A’ (spoken as A prime) and it includes
everything in U except what is included in A.

Subsets of a Set

A subset is any set that is also part of another set. For example, if U
= {1, 2, 3, 4, 5} and A = {1, 4, 5}, then we would say that A is a subset
of U. This is denoted like this: A ⊆ U. If B = {1, 2, 4, 7}, because 7 is
not part of U, we would say B is not a subset of U, also denoted like
this: B ⊄ U.

There are different kinds of subsets. Any subset can be called a
subset, but some can be described as a proper subset. A proper
subset is a subset that has elements of a set but not exactly all of
the elements in that set. For example, if set Y = {1, 2, 3} and Z = {1,
2, 3, 4}, then we could say that Y is a subset of Z and we could also
say that Y is a proper subset of Z because it does not include all of
the elements of Z. This is written as such: Y ⊂ Z.

Sometimes you will be asked to calculate how many subsets exist
within a set. This can be calculated using powers of 2. For example,
if I have the set {1, 4, 6, 2, 7}, I can see that there are 5 elements
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in the set. I make that 5 an exponent of 2 (2^5) to calculate how
many subsets are possible: 32. To calculate the number of proper
subsets, the equation is (2^n) – 1.

Set Operations

An intersection of sets is the elements of two sets that they have
in common. For example, {1, 4, 5} ∩ {6, 9, 5} = {5}. Put in other
words, A ∩ B = {x|x ∈ A and x ∈ B}. If two sets have no elements in
common, they are called disjointed sets and written as such: A ∩
B = ø. A union of sets is the set of all elements belonging to either
set one or set two, written as such: A ∪ B = {x|x ∈ A or x ∈ B}. A
difference of sets is the set of all elements of the first set and not
the second. For example, if set A is {1, 2, 3, 4, 5, 6} and B is {1, 3, 5},
then the difference would be {2, 4,6}. In other words, A – B = {x|x ∈
A and x ∉ B}.

When elements are placed in {braces}, it doesn’t matter in what
order they are listed. When elements are placed in (parentheses),
it’s called an ordered pair and it does matter what order they are
listed in. In other words (a,b) ≠ (b,a). In the ordered pair (a,b), a is
the first component and b is the second component.

A cartesian product of sets is a way of creating a set of ordered
pairs. It’s written like A X B and when presented with a problem
asking you to find cartesian products, you have to create ordered
pairs with each number in each set in the order that the notation
dictates. For example, if A = {1, 2, 3} and B = {8, 9}, and you were
asked to find A X B, then the answer would be {(1,8), (1,9), (2,8),
(2,9), (3,8), (3,9)}. If you were asked to find B X A, the answer would
be {(8,1), (8,2), (8,3), (9,1), (9,2), (9,3)}. The cardinal number of a
cartesian product is going to be the cardinal number of set 1 times
the cardinal number of set 2, or n(A) x n(B).
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This chapter was originally posted to the Math Support Center blog at
the University of Baltimore on November 11, 2019.
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