

Wolf T. Pecher

Spatial Analysis and Mapping with R: A
Short Tutorial
This is a pdf version1 of the book “Spatial Analysis and Mapping with R: A Short Tutorial” by Wolf
T. Pecher. The book is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License, except where otherwise noted.

Attributions

“Spatial Analysis and Mapping with R: A Short Tutorial” by Wolf T. Pecher used under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License (online at https:

//ubalt.pressbooks.pub/spatialanalysisenvironmentalstatisticsr/#main).

Cover

Design: Nett Smith

Cover image: Land Use in Greater Baltimore (2002). Data source: Maryland Archived Land Use
Land Cover 2002, Maryland Department of Planning, online at https://data.imap.maryland.gov
/datasets/96116be90edb4e8d933048f345c3a487?geometry=-79.386%2C38.060%2C-75.096%2C39.55

8#www.mdp.state.md.us/OurWork/landuse.shtml (accessed on April 17, 2021).

1Published with bookdown (https://github.com/rstudio/bookdown). LATEX class adapted from krantz.cls

https://ubalt.pressbooks.pub/spatialanalysisenvironmentalstatisticsr/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://ubalt.pressbooks.pub/spatialanalysisenvironmentalstatisticsr/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://ubalt.pressbooks.pub/spatialanalysisenvironmentalstatisticsr/#main
https://ubalt.pressbooks.pub/spatialanalysisenvironmentalstatisticsr/#main
https://data.imap.maryland.gov/datasets/96116be90edb4e8d933048f345c3a487?geometry=-79.386%2C38.060%2C-75.096%2C39.558#www.mdp.state.md.us/OurWork/landuse.shtml
https://data.imap.maryland.gov/datasets/96116be90edb4e8d933048f345c3a487?geometry=-79.386%2C38.060%2C-75.096%2C39.558#www.mdp.state.md.us/OurWork/landuse.shtml
https://data.imap.maryland.gov/datasets/96116be90edb4e8d933048f345c3a487?geometry=-79.386%2C38.060%2C-75.096%2C39.558#www.mdp.state.md.us/OurWork/landuse.shtml
https://github.com/rstudio/bookdown
https://github.com/rstudio/bookdown/blob/main/inst/examples/krantz.cls

Contents

List of Figures iii

List of Figures iii

Preface 1

Preface 1

1 Service Deserts 3
1.1 Definition of a Service Desert . 3

2 Coordinate Reference Systems 5
2.1 Geographic and Projected CRS . 5
2.2 Formats of CRS Definitions . 6
2.3 Common CRS . 6

3 Data 9
3.1 Data . 9
3.2 Data Sources and Description . 11

4 Data Import and Wrangling 15
4.1 Import Data into R . 15
4.2 Data Manipulation (Wrangling) . 20

5 Spatial Analysis — Part 1 35
Creation and Manipulation of Spatial Data . 35
5.1 First Maps . 40
5.2 Manipulating Geometries . 47

6 Spatial Analysis — Part 2 53
6.1 Identification of Possible Rural Vaccination Deserts 54
6.2 Possible Vaccination Deserts in Garrett County 58
6.3 Possible Vaccination Deserts in Baltimore City 64

Bibliography 77

i

ii Contents

Appendices 79
Appendix A: Terms of Use . 79
Appendix B: Data Sources . 80

List of Figures

5.1 A. Map of Maryland counties. B. Plot showing the names of the counties. C. Plot of
the vaccination sites in Maryland (on April 4, 2021). D. Plotting symbols in R. . . . 42

5.2 Location of COVID-19 vaccination sites in Maryland (last updated: April 4, 2021) 43
5.3 Location of COVID-19 vaccination sites in Maryland (last updated: April 4, 2021).

Urban census tracts are highlighted in orange. 46
5.4 Location of COVID-19 vaccination sites in urban and rural census tracts in Mary-

land (last updated: April 4, 2021). Urban tracts are highlighted in orange. 51

6.1 Map of political boundaries of Maryland, based on census tract boundaries. A.
County boundaries. B. State boundaries. 54

6.2 Vaccination sites with a 10 mi buffer, clipped to the Maryland state border. 55
6.3 Rural low-income tracts and vaccination sites with a 10 mi buffer, clipped to the

Maryland state border. 57
6.4 The map shows rural areas with potential vaccination deserts (highlighted in "hot

pink"). 58
6.5 Maps of Garrett County. A. County boundaries. B. Rural low-income census tracts

(highlighted in orange). C. Rural low-income census tracts (highlighted in orange)
and ranges of vaccination sites (highlighted in purple). Location of vaccination sites
are shown as green inverted triangles. 60

6.6 Map of Garrett County showing rural low-income census tracts (highlighted in red)
that are potential vaccination deserts. 64

6.7 Maps of Baltimore City. A. Outline of Baltimore City. B. Low-income census tracts
(highlighted in orange). C. Low-income census tracts (highlighted in orange) and a
range of vaccination sites (highlighted in purple). Location of vaccination sites are
shown as green inverted triangles. 67

6.8 Outcome of spatial manipulations on low-income tracts of Baltimore City. A. Inter-
section of low-income tracts and buffered vaccination sites (highlighted in purple)
generated by st_intersection(). B. Low-income tracts outside of the 0.5 mi buffer
around vaccination sites (“no-access” low-income tracts; highlighted in red). C.
Low-income census tracts that intersect with the vaccination site buffer (“with-access”
low-income tracts; highlighted in orange). 69

6.9 Map of Baltimore City showing low-income census tracts (highlighted in orange)
and possible vaccination deserts (highlighted in red). 76

iii

Preface

This tutorial introduces the reader to some of the amazing capabilities of R to work with and map
geographic data. Geographic data are data that contain spatial attributes (or spatial data) that define a
geographic space (location, area, elevation, etc.) and non spatial attributes (f.e., population density,
pollutant concentrations, temperature).

This tutorial was developed for one the units of the course “ENVS 420: Research Seminar in
Environmental Sciences” offered at the University of Baltimore. However, it is hoped that readers
outside of ENVS 420 who are interested in geospatial analysis and with a basic familiarity of R find
this tutorial useful.

The use of an integrated developer environment (IDE) or an IDE like configuration such as the
IDE RStudio (https://rstudio.com/) or the Nvim-R plug-in for the integration of vim/neovim and R

(https://github.com/jalvesaq/Nvim-R/tree/stable) is recommended but not necessary.

The tutorial was written with RMarkdown (v. 2.6) (Allaire et al., 2020; Xie et al., 2018, 2020) in R (v.
4.0.2) (R Core Team, 2020).

Required R packages:

• dplyr (Wickham et al., 2020)
• openxlsx (Schauberger & Walker, 2020)
• RColorBrewer (Neuwirth, 2014)
• sf (Pebesma, 2018)
• tmap (Tennekes, 2018)
• tidyr (Wickham & Henry, 2020)

Data

Datatasets used are archived in a zip compressed file (SpatialAnalysisData.zip) that can be down-
loaded at SpatialAnalysisData (URL: https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3J

N8ZyOPD4lXjynIbA3PvpvSaG4). The link will connect you to a cloud storage service (MEGA,
https://mega.nz) and ask you to download the file. By accessing the cloud storage service and
downloading the file/data you agree the terms of service of MEGA and to the terms of use of the
code and data.

1

https://rstudio.com/
https://github.com/jalvesaq/Nvim-R/tree/stable
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz
https://mega.nz/terms

Chapter 1
Service Deserts

In 2015 the United Nations General Assembly adopted 17 Sustainable Development Goals that are
at the core of the 2030 Agenda for Sustainable Development. The goals address the three dimensions
(pillows) of sustainable development, namely economic, social, and environmental sustainability.
The goals range from eradicating poverty and reduction of inequality to improved education and
health, improved resilience to climate change, and preservation of oceans and forests (United Nations
General Assembly, 2015).

1.1 Definition of a Service Desert

This chapter is about mapping rural and urban areas that have limited access to basic services, and as
such can be flagged as “Basic Service Deserts.” Improving access to basic services is included in
the 2030 Agenda for Sustainable Development. It is within the realms of Goal 3: “Ensure healthy
lives and promote well-being for all at all ages,” and Goal 11: “Make cities and human settlements
inclusive, safe, resilient and sustainable” (United Nations General Assembly, 2015).

The definition of a “Service Desert” is based on the definition of a “Food Desert.” The U.S. Depart-
ments of Agriculture (USDA), Treasury, and Health and Human Services (HHS) define census tracts
as “Food Deserts” if the following criteria are met (Ver Ploeg et al., 2011):

1. The census tract is considered a low-income area. Low-income areas are defined as areas with
a poverty rate > 20% or with a median family income of less than 80% of the median family
income of the state or the respective urban area.

2. The census tract is considered a low-access area. At least five hundred people or 33% of the
population of the area live more than one mile away from a supermarket in urban centers, and
more than 10 miles away in rural areas.

However, if it is assumed that access to services in urban centers should be available to residents
without means of transportation arguably walking distance should be considered. Walking distance
is a measure of how much distance can be covered by walking over time. What distance is deemed
acceptable is somewhat arbitrary and is influenced by many factors. Not surprisingly, it is a heavily
debated topic. Studies around transportation suggest that a walking distance of 800 m (0.5 mi) may
be acceptable, which translates roughly to a 10 to 15-minute walk.

3

4 1 Service Deserts

The open access datasets that are used do not allow to identify the precise location of each house-
hold/resident, making it impossible to calculate the number or proportion of residents that live
outside a certain range. As a proxy, we use the area of a census tract.

Therefore, for the purpose of this chapter, we declare a census tract a “Service Desert” if the census
tract is a low-income tract (as defined above) with limited access (not low access) to the service. A
census tract is considered a limited-access tract if 33% or more of the area of the census tract is
outside a 0.5 mi or 10 mi range of the service for urban centers and rural areas, respectively.

Chapter 2
Coordinate Reference Systems

When working with spatial data, coordinate reference systems (CRS) are a key component. CRS
allow to determine positions on a three-dimensional surface (usually Earth) and project them onto a
two-dimensional surface (“flattening”). Key components that define a CRS are:

• Coordinate system: A x and y and z grid that defines where the data points are located in space.

• Units: Units of the distances on the x and y axis of the grid (horizontal unit) and the z axis
(vertical unit)

• Datum: Model of the shape of the object (in our case, Earth), that defines the origin of the
coordinate system (or, the reference point). For a global system for example the reference point
is the Prime Meridian and the Equator.

• Projection: The mathematical equation used to project positions on the 3D object onto a 2D
flat surface.

2.1 Geographic and Projected CRS

Geographic Coordinate Reference Systems are used to map places on the surface of a globe (i.e.,
Earth) based on two values, longitude and latitude. Longitude is the location in East-West direction
in angular distance (usually degrees) from the Prime Meridian. Latitude is the North/South location
in angular distance from the Equator. Units of angular distances are not linear. Therefore, geographic
CRS are not suitable to calculate and compare distances between locations.

Most geographic CRS model the Earth as an ellipsoid rather than a perfect sphere. What ellipsoid is
used is defined by the datum.

There are two types of datum: a geocentric datum and a local datum. The geocentric (or geoid) datum
(such as the WGS84) uses the Earth’s center of gravity as its center. The ellipsoid is not optimized for
local variations. A local datum, such as the North America Datum (NAD) optimize the ellipsoid to
include local variations such as large mountain ranges.

Projected Coordinate Reference Systems are based on a Cartesian coordinate system on a flat
surface. Map projections are used to convert the 3D surface of the Earth into x and y coordinates of
the projected CRS. Projections are grouped into 3 main types, conic, cylindrical, and planar.

5

6 2 Coordinate Reference Systems

2.2 Formats of CRS Definitions

There are multiple formats that define CRS, including WKT (well-known text) strings, proj4string,
and EPSG.

Spatial packages in R support two ways of describing CRS: EPSG code and proj4string definitions.
EPSG code defines one specific CRS whereas proj4string definitions are more flexible and allow to
define projection, datum etc.

2.3 Common CRS

The World Geodetic System 1984 (WGS84or WGS 84) and the North American Datum 1983 (NAD83)
are two commonly used CRS in the U.S. Both systems are geocentric and use Greenwich as the Prime
Meridian. Units of measurements are degrees, and the axes longitude (x) and latitude (y).

The EPSG code of the WGS 84 is 4326, and the proj4string is +proj=longlat +ellps=WGS84

+datum=WGS84 +no_defs. WGS 84 is used by the global positioning system (GPS).

The NAD83 is a local datum used in Canada and the U.S. The EPSG of the latest rendition of NAD83
(2011) is 4269 and the proj4string is +proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs. It uses
a different ellipsoid model (GRS80). Furthermore, NAD83 coordinates for points on North American
Plate do not change over time. Thus, coordinates of locations on the North American Plate are not
affected by plate tectonics. Having said that, position west of the San Andreas Fault and Hawaii are
not on the North American Plate. In contrast, WGS 84 position coordinates are defined based on the
average of stations around the globe. Therefore coordinates of WGS 84 defined positions deviate by 1
to 2 cm per year from coordinates established by NAD83. Today the deviations are large enough that
they need to be taken into consideration.

If calculations of area or distance are required, and to avoid distortions, spatial data using a geocentric
CRS need to be re-projected to a projected CRS with linear units (meter, feet, US survey feet). Which
projected CRS to use depends on the region. For Maryland, NAD83(2011)/Maryland (EPSG: 6487, unit:
meter; or EPSG: 6488, unit: US survey feet) are often used.

Note, there are (at least) two other EPSG codes that seem to be equivalent to EPSG:6487 and EPSG:6488,
namely EPSG:26985 and EPSG:2248.

• proj4string of EPSG:6487 and 26985:

– EPSG:6487: +proj=lcc +lat_0=37.6666666666667 +lon_0=-77 +lat_1=39.45

+lat_2=38.3 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs.

– EPSG:26985: +proj=lcc +lat_0=37.6666666666667 +lon_0=-77 +lat_1=39.45

+lat_2=38.3 +x_0=400000 +y_0=0 +datum=NAD83 +units=m +no_defs.

2.3 Common CRS 7

• proj4string of EPSG:6488 and 2248:

– EPSG:6488: +proj=lcc +lat_0=37.6666666666667 +lon_0=-77 +lat_1=39.45

+lat_2=38.3 +x_0=399999.9998984 +y_0=0 +ellps=GRS80 +units=us-ft +no_defs.

– EPSG:2248: +proj=lcc +lat_0=37.6666666666667 +lon_0=-77 +lat_1=39.45

+lat_2=38.3 +x_0=399999.9998984 +y_0=0 +datum=NAD83 +units=us-ft +no_defs.

EPSG:6487 and 6488 were released by the U.S. National Geodetic Survey (Revision date: 2013-10-
09). The area covered is Maryland (IOGP Geomatics Committee, 2021). EPGS:26985 and 2248 were
released by the U.S. Defense Agency TR8350.2 (Revision date: 2014-11-19). The area covered
appears to be much broader (WGS 84 bounds: -172.54 23.81; -47.74 86.46) (MapTiler Team, 2019).
These two EPSG are not included in the EPSG Geodeditc parameter dataset (v10.018).

For both, EPSG:6487 and EPSG:6488 the latitude/longitude at the (artificial) origin (0, 0) is
37°34’38.14264“N and 81°31’45.07877”W. False Easting at the 77th meridian is 400,000 m
(EPSG:6487) and 399,999.9998984 m (EPSG:6488) (Reger, 2013).

Chapter 3
Data

As an example we will map census tracts in Maryland and Baltimore City with limited access to
COVID-19 vaccination sites using open access datasets.

3.1 Data

The following datasets were retrieved from different open access sources on April 4, 2021:

1. Food Access Research Atlas Data (Data Download 2015) (Excel Workbook format [.xlsx])

2. Census tract boundaries (ESRI shapefile collection [.zip])

3. List of COVID-19 vaccination sites in Maryland, with coordinates (comma separated values
file, [.csv])

4. Maryland Physical Boundaries - County Boundaries (ESRI shapefile collection [.zip])

Access to Data

The datasets were archived in a zip compressed file (SpatialAnalysisData.zip) that can be down-
loaded at SpatialAnalysisData (URL: https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3J

N8ZyOPD4lXjynIbA3PvpvSaG4). The link will connect you to a cloud storage service (MEGA,
https://mega.nz) and ask you to download the file. By accessing the cloud storage service and
downloading the file/data you agree to the terms of service of MEGA and to the terms of use of the
code and data.

Data Retrieval

1. Create a directory called data in your R project folder.

2. Click on the SpatialAnalysisData link (URL: https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_
GX3JN8ZyOPD4lXjynIbA3PvpvSaG4).

3. Click on Download and save the file in the data directory. A zip compressed archive file
(SpatialAnalysisData.zip; about 81.5 MB large) will be downloaded.

4. Unzip the archive file with the following R command:

9

https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz
https://mega.nz/
https://ubalt.pressbooks.pub/spatialanalysisenvironmentalstatisticsr/back-matter/appendix-2/#back-matter-1203-section-1
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4
https://mega.nz/file/hYk02AyK#4knQ1zcaIxKTN_GX3JN8ZyOPD4lXjynIbA3PvpvSaG4

10 3 Data

destfile <- "data/SpatialAnalysisData.zip"

unzip(destfile, exdir = "data/")

If you get a warning message, such as

Warning:
In unzip(destfile, exdir = "data/") : error 1 in extracting from zip file"))

then the file may have not been downloaded into your directory.

Check:

• if you have a typo in the destfile,
• if you are in the correct working directory (with the command getwd()), or
• if the zip archive file is in the data directory of your working directory.

The latter can be checked with the R command file.exists():

file.exists("data/SpatialAnalysisData.zip")

If the outcome is [1] "FALSE" then the file is missing. Find the file and move it into the data

directory.

Once successful, you should have the following files in your data directory:

• FoodAccess2015.xlsx

• gz_2010_24_140_00_500k.zip

• gz_2010_24_140_00_500k.dbf

• gz_2010_24_140_00_500k.prj

• gz_2010_24_140_00_500k.shp

• gz_2010_24_140_00_500k.shx

• gz_2010_24_140_00_500k.xml

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).cpg

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).csv

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).dbf

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).prj

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).shp

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).shx

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).xml

• MD_counties_CT.dbf

3.2 Data Sources and Description 11

• MD_counties_CT.prj

• MD_counties_CT.shp

• MD_counties_CT.shx

• MD_Covid19_VacSites_2021-04-04.csv

• SpatialAnalysisData.zip

3.2 Data Sources and Description

Food Access Research Atlas Data (2015 Dataset)

In 2008 the U.S. Congress directed the USDA to assess the extend of areas with limited access to
fresh food (U.S. Department of Agriculture, 2009). Subsequently, the USDA Economic Research
Service (USDA-ERS) developed a mapping tool called “the Food Desert Locator” (Ver Ploeg et al.,
2011). The Food Desert Locator allows to identify census tracts that qualify as food deserts [as
defined by USDA, Treasury, and HHS (Ver Ploeg et al., 2011)].

We are using this dataset as it lists (among more than 140 parameters) low-income and low-vehicle
access census tracts.

The data is compiled into an Excel workbook (download size approx. 75 Mb). The workbook has
three sheets, Read me, Variable Lookup, and Food Access Research Atlas. The latter contains the
data aggregated based on data from the 2010 census.

Definitions and data sources can be accessed at https://www.ers.usda.gov/data-products/food-
access-research-atlas/documentation/.

Source: USDA Economic Research Service (USDA-ERS), available at
https://www.ers.usda.gov/data-products/food-access-research-

atlas/download-the-data/

Source URL https://www.ers.usda.gov/webdocs/DataFiles/80591/DataDownload201

5.xlsx?v=5276.5, retrieved on Apr 4, 2021

Census Tracts

Food Atlas data is based on census tracts of the 2010 census. Census tracts are (relatively stable)
statistical subdivisions of counties that ideally have 4,000 people (range: 1,200–8,000 people) (U.S.
Census Bureau, 2019). To map, census tracts polygons are required.

Source: Census Tracts for Maryland, United States Census Bureau,
Cartographic Boundary Files – Shapefile, available at
https://www.census.gov/geographies/mapping-files/time-

series/geo/carto-boundary-file.2010.html

https://www.ers.usda.gov/data-products/food-access-research-atlas/documentation/
https://www.ers.usda.gov/data-products/food-access-research-atlas/documentation/
https://www.ers.usda.gov/data-products/food-access-research-atlas/download-the-data/
https://www.ers.usda.gov/data-products/food-access-research-atlas/download-the-data/
https://www.ers.usda.gov/webdocs/DataFiles/80591/DataDownload2015.xlsx?v=5276.5
https://www.ers.usda.gov/webdocs/DataFiles/80591/DataDownload2015.xlsx?v=5276.5
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2010.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2010.html

12 3 Data

URL (Maryland): https://www2.census.gov/geo/tiger/GENZ2010/gz_2010_24_140_00_5

00k.zip, retrieved on Apr 4, 2021

Census tract polygons are stored in an ESRI shapefile collection as a zip archive file. The zip file
contains 5 files, a shapefile (.shp), 3 necessary auxiliary files (.dbf, .prj, .shx), and an additional
.xml file. The .xml file is not necessary for spatial analysis.

List of COVID-19 Vaccination Sites

A list of COVID-19 vaccination sites in Maryland was retrieved from the Maryland Department of
Health Coronavirus website (https://coronavirus.maryland.gov)

Source: All Maryland Vaccination Sites,
https://coronavirus.maryland.gov/datasets/all-maryland-

vaccination-sites-1

URL (.csv) https://opendata.arcgis.com/datasets/d677f143334648a1a40b84d94df

8e134_4.csv, retrieved on April 4, 2021
Credit: Maryland Department of Health COVID-19 Testing Task Force
Metadata: https://www.arcgis.com/sharing/rest/content/items/d677f143334648

a1a40b84d94df8e134/info/metadata/metadata.xml?format=default&out

put=html

The dataset was slightly modified for educational purposes. An additional variable (column) —
Location — was added and variables rearranged. The Location variable contains GPS coordinates
of the vaccination sites in a (latitude, longitude) format. This format is often encountered in
datasets that provide GPS information in tabular form.

Maryland Physical Boundaries — County Boundaries (Detailed)

Shapefile collection containing boundaries of Maryland counties.

Source: Maryland Physical Boundaries - County Boundaries (Detailed)
https://data.imap.maryland.gov/datasets/maryland-physical-bounda

ries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-

73.569%2C39.559https://data.imap.maryland.gov/datasets/maryland-
physical-boundaries-county-

URL (.zip) https:

//opendata.arcgis.com/datasets/2315ef0b071a4ec59420e3d342dbcfe2_

0.zip?outSR=%7B%22latestWkid%22%3A3857%2C%22wkid%22%3A102100%7D,
retrieved on Apr 4, 2021

Credit: MD iMAP, SHA

https://www2.census.gov/geo/tiger/GENZ2010/gz_2010_24_140_00_500k.zip
https://www2.census.gov/geo/tiger/GENZ2010/gz_2010_24_140_00_500k.zip
https://coronavirus.maryland.gov
https://coronavirus.maryland.gov/datasets/all-maryland-vaccination-sites-1
https://coronavirus.maryland.gov/datasets/all-maryland-vaccination-sites-1
https://opendata.arcgis.com/datasets/d677f143334648a1a40b84d94df8e134_4.csv
https://opendata.arcgis.com/datasets/d677f143334648a1a40b84d94df8e134_4.csv
https://www.arcgis.com/sharing/rest/content/items/d677f143334648a1a40b84d94df8e134/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/d677f143334648a1a40b84d94df8e134/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/d677f143334648a1a40b84d94df8e134/info/metadata/metadata.xml?format=default&output=html
https://data.imap.maryland.gov/datasets/maryland-physical-boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-73.569%2C39.559
https://data.imap.maryland.gov/datasets/maryland-physical-boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-73.569%2C39.559
https://data.imap.maryland.gov/datasets/maryland-physical-boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-73.569%2C39.559
https://opendata.arcgis.com/datasets/2315ef0b071a4ec59420e3d342dbcfe2_0.zip?outSR=%7B%22latestWkid%22%3A3857%2C%22wkid%22%3A102100%7D
https://opendata.arcgis.com/datasets/2315ef0b071a4ec59420e3d342dbcfe2_0.zip?outSR=%7B%22latestWkid%22%3A3857%2C%22wkid%22%3A102100%7D
https://opendata.arcgis.com/datasets/2315ef0b071a4ec59420e3d342dbcfe2_0.zip?outSR=%7B%22latestWkid%22%3A3857%2C%22wkid%22%3A102100%7D

3.2 Data Sources and Description 13

Metadata: https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4e

c59420e3d342dbcfe2/info/metadata/metadata.xml?format=default&out

put=html

Maryland County Boundaries

Shapefile collection containing boundaries of Maryland counties. Based on unified census tract
boundaries (source of the original data: Census Tracts).

https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4ec59420e3d342dbcfe2/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4ec59420e3d342dbcfe2/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4ec59420e3d342dbcfe2/info/metadata/metadata.xml?format=default&output=html

Chapter 4
Data Import and Wrangling

This section shows how to import data, and perform some “data wrangling.” Data wrangling refers
to steps taken to make data more useful to downstream applications. Here we show approaches to
clean up the raw data, i.e., remove missing values, filter out unnecessary information, and merge
data sets. Data visualization and transformation of non-spatial data to spatial simple feature objects
is introduced in the next section.

It is assumed that you already downloaded and unpacked the data into the data folder in your R

project folder. If not, please do so before continuing (see Section 3.1).

4.1 Import Data into R

Food Access Research Atlas Data (2015 Data Set)

As mentioned in Section 3.2, the data is compiled into an Excel workbook. Excel workbooks
(.xlsx format) can be imported directly into R by several packages, including xlsx, XLconnect,
read_xlsx, and openxlsx. In this section we are using the package openxlsx. In contrast to the
xlsx and XLConnect packages, openxlsx does not depend on Java. For detailed information on the
openxlsx package please consult the documentation available:

• https://www.rdocumentation.org/packages/openxlsx/versions/4.2.3

• https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf

The openxlsx package provides functions to work with Excel worksheets, including functions to
extract the of names of worksheets as well as to import selected worksheets.

Explore the structure of the workbook

The function openxlsx::getSheetNames() extracts the names of Excel worksheets.

openxlsx::getSheetNames("data/FoodAccess2015.xlsx")

[1] "Read Me" "Variable Lookup"
[3] "Food Access Research Atlas"

15

https://www.rdocumentation.org/packages/openxlsx/versions/4.2.3
https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf

16 4 Data Import and Wrangling

The output shows that the workbook has 3 worksheets:

1. Read Me

2. Variable Lookup

3. Food Access Research Atlas

Import relevant sheets

The worksheet Food Access Research Atlas contains the data we are interested in. The fol-
lowing code imports this worksheet as a data frame and assigns the data frame to the object
FoodAccess2015. Note, this is a large file. Reading it into R will take a while. Be patient.

FoodAccess2015 <- openxlsx::read.xlsx("data/FoodAccess2015.xlsx",
sheet = "Food Access Research Atlas")

Alternatively, the index number of the worksheet can be used:

FoodAccess2015 <- openxlsx::read.xlsx("data/FoodAccess2015.xlsx",
sheet = 3)

Next, the structure of the data frame is explored with str(). The output of the following code lists
the first 20 variables (set by the argument list.len = 20). If all variables should be displayed, the
argument would be list.len = ncol().

str(FoodAccess2015, list.len = 20, strict.width = "cut")

'data.frame': 72864 obs. of 147 variables:
$ CensusTract : chr "01001020100" "01001020200" "01001020300" "0100"..
$ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
$ County : chr "Autauga" "Autauga" "Autauga" "Autauga" ...
$ Urban : num 1 1 1 1 1 1 1 0 0 0 ...
$ POP2010 : num 1912 2170 3373 4386 10766 ...
$ OHU2010 : num 693 743 1256 1722 4082 ...
$ GroupQuartersFlag : num 0 0 0 0 0 0 0 0 0 0 ...
$ NUMGQTRS : num 0 181 0 0 181 0 36 0 0 14 ...
$ PCTGQTRS : num 0 0.0834 0 0 0.0168 ...
$ LILATracts_1And10 : num 0 0 0 0 0 0 1 0 0 0 ...
$ LILATracts_halfAnd10: num 0 0 0 0 0 0 1 0 0 0 ...
$ LILATracts_1And20 : num 0 0 0 0 0 0 1 0 0 0 ...
$ LILATracts_Vehicle : num 0 0 0 0 0 0 1 0 0 0 ...
$ HUNVFlag : num 0 0 0 0 1 0 1 1 0 0 ...
$ LowIncomeTracts : num 0 0 0 0 0 0 1 0 0 0 ...
$ PovertyRate : num 10 18.2 19.1 3.3 8.5 ...

4.1 Import Data into R 17

$ MedianFamilyIncome : num 74750 51875 52905 68079 77819 ...
$ LA1and10 : num 1 0 1 1 1 1 1 0 0 1 ...
$ LAhalfand10 : num 1 1 1 1 1 1 1 0 0 1 ...
$ LA1and20 : num 1 0 1 1 1 1 1 0 0 0 ...
[list output truncated]

The data frame has 72,864 observations (rows) and 147 variables (columns). Note that the variable
CensusTract is a character string (chr). Furthermore, variables such as Urban or POP2010 were
imported as real numbers (double precision numbers, num).

Census Tracts Polygons

The census tracts polygons are stored in a so called “shapefile collection” with the filename prefix
gz_2010_24_140_00_500k. A shapefile collection consists of a number of different file types with the
same filename prefix. These files contain geometric location and features as well attributes to these
features. The files need to be stored in the same directory. This filing format was developed and is
maintained by the Environmental Systems Research Institute (ESRI) (ESRI, 2020).

Four of these file types are required when performing spatial analysis:

• .shp, the shapefile itself, contains the features’ geometry,
• .shx, contains the index of the feature geometry,
• .dbf, a table in dBASE that contains the attributes of the features, and
• .prj, a text file that contains the coordinate reference system information (CRS) of the features.

The function st_read() from the package sf imports shapefiles into R. While only the shapefile
proper (.shp) is called, the function needs the other 3 files to properly import the geometric features
and their attributes.

MD_CensusTracts_2010 <- sf::st_read("data/gz_2010_24_140_00_500k.shp")

MD_CensusTracts_2010

Simple feature collection with 1403 features and 7 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -79.48765 ymin: 37.91172 xmax: -75.04894 ymax: 39.72304
Geodetic CRS: NAD83
First 10 features:
GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
1 1400000US24015031400 24 015 031400 314 Tract 16.039
2 1400000US24017850101 24 017 850101 8501.01 Tract 9.718
3 1400000US24017850706 24 017 850706 8507.06 Tract 2.698
4 1400000US24017850710 24 017 850710 8507.10 Tract 1.401
5 1400000US24017850901 24 017 850901 8509.01 Tract 2.082
6 1400000US24017851500 24 017 851500 8515 Tract 5.010

18 4 Data Import and Wrangling

7 1400000US24017990000 24 017 990000 9900 Tract 0.000
8 1400000US24019970702 24 019 970702 9707.02 Tract 43.137
9 1400000US24019970804 24 019 970804 9708.04 Tract 87.808
10 1400000US24019970900 24 019 970900 9709 Tract 211.650
geometry
1 MULTIPOLYGON (((-76.15435 3...
2 MULTIPOLYGON (((-77.09875 3...
3 MULTIPOLYGON (((-76.94249 3...
4 MULTIPOLYGON (((-76.96267 3...
5 MULTIPOLYGON (((-76.90672 3...
6 MULTIPOLYGON (((-76.96267 3...
7 MULTIPOLYGON (((-77.08633 3...
8 MULTIPOLYGON (((-76.25027 3...
9 MULTIPOLYGON (((-76.16439 3...
10 MULTIPOLYGON (((-76.04837 3...

The first line of the code reads in the data. You may get a warning similar to the following:

Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
when loading 'dplyr'

The warning can be ignored. It basically tells you that if the package dplyr would be loaded,
“traditional” data frames may be replaced by tibble data frames. This will not affect our analysis.

The second line of code (MD_CensusTracts_2010) prints out the first 10 entries of the read in shapefile.
It tells us that MD_CensusTracts_2010 is a “simple feature” object (sf) with 1,403 and 7 fields (plus
a geometry column). The geometric features are multi polygons. The coordinate reference system
(CRS) is NAD83. NAD83 stands for the North American Datum of 1983. The NAD83(2011) is the current
geodetic system that is used for the continental U.S. (Section 2.3) (National Geodetic Survey, 2018).

Maryland Counties (Physical) Boundaries

The Maryland_Physical_Boundaries_-County_Boundaries(Detailed) shapefile collection contains
polygons of the Maryland counties (physical) boundaries that take into consideration waterways
(such as the tributaries of Chesapeake Bay).

Import the file with st_read().

4.1 Import Data into R 19

MD_counties_map <-
sf::st_read("data/Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).shp")

MD_counties_map

Simple feature collection with 24 features and 7 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -8848486 ymin: 4564403 xmax: -8354439 ymax: 4825752
Projected CRS: WGS 84 / Pseudo-Mercator
First 10 features:
OBJECTID COUNTY DISTRICT COUNTY_FIP COUNTYNUM CREATION_D LAST_UPDAT
1 1 Allegany 6 1 1 2010-01-28 2010-01-28
2 2 Anne Arundel 5 3 2 2006-04-18 2006-04-18
3 3 Baltimore 4 5 3 2006-10-09 2006-10-09
4 4 Baltimore City 0 510 24 2006-04-18 2009-11-16
5 5 Calvert 5 9 4 2010-01-28 2010-01-28
6 6 Caroline 2 11 5 2007-05-21 2008-07-30
7 7 Carroll 7 13 6 2008-06-16 2012-01-17
8 8 Cecil 2 15 7 2006-04-18 2008-08-20
9 9 Charles 5 17 8 2009-06-08 2009-06-08
10 10 Dorchester 1 19 9 2007-02-08 2007-02-22
geometry
1 MULTIPOLYGON (((-8721085 48...
2 MULTIPOLYGON (((-8527741 47...
3 MULTIPOLYGON (((-8523507 48...
4 MULTIPOLYGON (((-8519244 47...
5 MULTIPOLYGON (((-8531762 46...
6 MULTIPOLYGON (((-8432189 47...
7 MULTIPOLYGON (((-8556981 47...
8 MULTIPOLYGON (((-8441053 48...
9 MULTIPOLYGON (((-8580309 46...
10 MULTIPOLYGON (((-8439760 46...

This dataset uses a projected CRS that is based on WGS 84 using a pseudo-mercator projection.
Pseudo-mercator projections are used by many web based mapping apps.

List of Vaccination Sites

MD_Covid19_VacSites_2021-04-04.csv is a comma separated file that lists COVID-19 vaccination
sites in Maryland. The table is read into R with read.table() and assigned to the object VaccineSites.
Its structure is explored with str().

20 4 Data Import and Wrangling

VaccineSites <- read.table(file = "data/MD_Covid19_VacSites_2021-04-04.csv",
sep = ",",
na.strings = c(""," ", "NA"),
header = TRUE,
quote = "\"",
fill = TRUE)

str(VaccineSites, list.len = 20, strict.width = "cut")

'data.frame': 556 obs. of 48 variables:
$ OBJECTID : int 84 87 92 93 95 96 98 99 100 102 ...
$ facilityid : chr "Anna_Lumi_83" "Lanh_Lumi_86" "Balt_Grac_91"..
$ name : chr "Luminis Health Anne Arundel Medical Center"..
$ fulladdr : chr "2001 Medical Parkway, Annapolis, MD 21401""..
$ Location : chr "(38.990512076102, -76.5341664410021)" "(38"..
$ X : num -76.5 -76.9 -76.6 -77 -76.9 ...
$ Y : num 39 39 39.3 39.6 39.2 ...
$ municipality : chr "Annapolis" "Lanham" "Baltimore" "Westminst"..
$ CreationDate : chr "1970/01/01 00:00:00+00" "1970/01/01 00:00:"..
$ Creator : logi NA NA NA NA NA NA ...
$ EditDate : chr "1970/01/01 00:00:00+00" "1970/01/01 00:00:"..
$ Editor : chr NA NA NA NA ...
$ ActiveYesNo : chr "Yes" "Yes" "Yes" "Yes" ...
$ site_type : chr "Hospital" "Hospital" "Hospital" "Hospital" ..
$ appt_required : logi NA NA NA NA NA NA ...
$ operationalhours : chr "Mon - Fri 7 am - 7 pm" "Mon - Fri 7am - 7 "..
$ docorder_required : logi NA NA NA NA NA NA ...
$ costfree : logi NA NA NA NA NA NA ...
$ cost_outpocket : logi NA NA NA NA NA NA ...
$ drivethru : logi NA NA NA NA NA NA ...
[list output truncated]

This data frame contains 556 observations and 48 variables. The data frame as a variable called
Location that has GPS coordinates presented as (longitude, latitude). The data frame also has
xy coordinates (variables X and Y). However for the purpose of practice, we will not use them.

4.2 Data Manipulation (Wrangling)

Once the data are imported, in most cases the data needs to be manipulated to continue with the
analysis.

Our aim is to map “vaccination deserts” in Maryland and in Baltimore City. We have 3 datasets,
namely 2 (non spatial) data frames, FoodAccess2015 and VaccineSites, and a spatial object,
MD_CensusTracts. The two data frames contain geographic and demographic information (loca-

4.2 Data Manipulation (Wrangling) 21

tion of vaccination sites in Maryland, demographic profiles of the census tracts within the U.S.), and
the spatial (simple feature) object the geographic boundaries of census tracts in Maryland.

We need to:

1. Extract the data for Maryland and Baltimore City, where possible,

2. Combine demographic profiles and geographic boundaries, and

3. Convert the data frame with location information on vaccination sites into a spatial (simple
feature) object.

This section describes how to extract data from a data frame (spatial and non-spatial) as well as
merging data frames. Conversion of data frames into spatial objects, manipulation of spatial objects,
and mapping is discussed in the next section.

Subsetting (Filtering) Data Frames

We are interested in data within Maryland and Baltimore City. To extract the data we use the function
subset() (part of the core R installation).

Food Access Data

The data frame contains data for the entire US. List the first five variables with str().

str(FoodAccess2015, list.len = 5, strict.width = "cut")

'data.frame': 72864 obs. of 147 variables:
$ CensusTract : chr "01001020100" "01001020200" "01001020300" "0100"..
$ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
$ County : chr "Autauga" "Autauga" "Autauga" "Autauga" ...
$ Urban : num 1 1 1 1 1 1 1 0 0 0 ...
$ POP2010 : num 1912 2170 3373 4386 10766 ...
[list output truncated]

The output shows that the data frame contains the variable State and County. The following
code extracts only the rows for the state of Maryland, assigns the new data frame to the object
FoodAccess2015_MD, and shows the structure of the first 20 variables of the new object.

FoodAccess2015_MD <- subset(FoodAccess2015, State == "Maryland")

str(FoodAccess2015_MD, list.len = 20, strict.width = "cut")

22 4 Data Import and Wrangling

'data.frame': 1399 obs. of 147 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "2400"..
$ State : chr "Maryland" "Maryland" "Maryland" "Maryland" ...
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ OHU2010 : num 1523 1284 1133 1350 1044 ...
$ GroupQuartersFlag : num 0 0 0 0 0 0 0 0 0 0 ...
$ NUMGQTRS : num 39 1517 155 14 345 ...
$ PCTGQTRS : num 0.01049 0.33238 0.05576 0.00463 0.12619 ...
$ LILATracts_1And10 : num 1 0 0 1 1 0 0 0 0 0 ...
$ LILATracts_halfAnd10: num 1 0 0 1 1 1 1 1 0 0 ...
$ LILATracts_1And20 : num 0 0 0 1 1 0 0 0 0 0 ...
$ LILATracts_Vehicle : num 0 0 0 0 0 0 1 1 0 0 ...
$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...
$ LowIncomeTracts : num 1 1 1 1 1 1 1 1 1 1 ...
$ PovertyRate : num 6.6 13.7 20.2 12.8 56 ...
$ MedianFamilyIncome : num 56875 60943 42727 48831 34519 ...
$ LA1and10 : num 1 0 0 1 1 0 0 0 0 0 ...
$ LAhalfand10 : num 1 0 0 1 1 1 1 1 0 0 ...
$ LA1and20 : num 0 0 0 1 1 0 0 0 0 0 ...
[list output truncated]

To verify that the new object only contains Maryland, call unique():

unique(FoodAccess2015_MD$State)

[1] "Maryland"

While it is possible to continue to work with the entire FoodAccess2015 data frame, removing
unwanted variables (columns) reduces the size of the data frame.

Based on the documentation https://www.ers.usda.gov/data-products/food-access-research-

atlas/documentation/, we are interested in:

• Urban/Rural designation,
• County,
• Total population,
• Low Income, and
• Vehicles access.

To identify variable names in the FoodAccess2015 data frame we import the Variable Lookup sheet
from the FoodAccess2015.xlsx Excel workbook (sheet 2, see above), and show the first six entries
(rows) with the head() function.

https://www.ers.usda.gov/data-products/food-access-research-atlas/documentation/
https://www.ers.usda.gov/data-products/food-access-research-atlas/documentation/

4.2 Data Manipulation (Wrangling) 23

FoodAccessVar <- openxlsx::read.xlsx("data/FoodAccess2015.xlsx",
sheet = "Variable Lookup")

head(FoodAccessVar, 6)

Field LongName
1 CensusTract Census tract
2 State State
3 County County
4 Urban Urban tract
5 POP2010 Population, tract total
6 OHU2010 Housing units, total
Description
1 Census tract number
2 State name
3 County name
4 Flag for urban tract
5 Population count from 2010 census
6 Occupied housing unit count from 2010 census

To identify the variable name for low income, we can query the FoodAccessVar data frame using a
regular expression (regex). Regular expressions are strings of text that help to find text pattern. The
regular expression "[Ll]ow[[:space:]][Ii]ncome" for example will match the character strings Low

income, low income, Low Income, and low Income.

The function grepl() is a function that will check if the content of an element of a vector (such the
cell of a table) matches a regular expression. It will return a logical vector (TRUE/FALSE). Therefore
we can use grepl() to extract rows from a data frame that contain the regular expression.

FoodAccessVar_low_income <- subset(FoodAccessVar,
grepl("[Ll]ow[[:space:]][Ii]ncome",
FoodAccessVar$LongName) == TRUE)

FoodAccessVar_low_income[,1:2]

Field
10 LILATracts_1And10
11 LILATracts_halfAnd10
12 LILATracts_1And20
13 LILATracts_Vehicle
15 LowIncomeTracts
LongName
10 Low income and low access tract measured at 1 mile for urban areas and 10 miles

for rural areas

24 4 Data Import and Wrangling

11 Low income and low access tract measured at 1/2 mile for urban areas and 10 miles
for rural areas

12 Low income and low access tract measured at 1 mile for urban areas and 20 miles
for rural areas

13 Low income and low access tract using vehicle access or low income and low access
tract measured at 20 miles

15 Low income tract

The first line of the code extracts the rows of the FoodAccessVar data frame that have reg-
ular expression in the variable LongName. The filtered data frame is assigned to the object
FoodAccessVar_low_income.

The second line displays the first two columns of the new data frame/object.

We repeat the code above for vehicle access, and extract rows that contain the expression [Vv]ehicle

[Aa]ccess]. The filtered data frame is assigned to the object FoodAccessVar_vehicle_access.

FoodAccessVar_vehicle_access <- subset(FoodAccessVar,
grepl("[Vv]ehicle[[:space:]][Aa]ccess",
FoodAccessVar$LongName) == TRUE)

FoodAccessVar_vehicle_access[,1:2]

Field
13 LILATracts_Vehicle
14 HUNVFlag
25 LATractsVehicle_20
54 lahunvhalf
55 lahunvhalfshare
80 lahunv1
81 lahunv1share
106 lahunv10
107 lahunv10share
132 lahunv20
133 lahunv20share
LongName
13 Low income and low access tract using vehicle access or low income and low access

tract measured at 20 miles
14 Vehicle access, tract with low vehicle access
25 Low access tract using vehicle access and at 20 miles in rural areas
54 Vehicle access, housing units without and low access at 1/2 mile, number
55 Vehicle access, housing units without and low access at 1/2 mile, share
80 Vehicle access, housing units without and low access at 1 mile, number
81 Vehicle access, housing units without and low access at 1 mile, share
106 Vehicle access, housing units without and low access at 10 miles, number
107 Vehicle access, housing units without and low access at 10 miles, share
132 Vehicle access, housing units without and low access at 20 miles, number
133 Vehicle access, housing units without and low access at 20 miles, share

4.2 Data Manipulation (Wrangling) 25

Based on the above outputs, it looks like that the variables HUNVFlag and LowIncomeTracts are of
interest. The first identifies tracts with low vehicle access, the second low-income tracts.

We therefore subset the FoodAccess2015_MD data frame to only keep the CensusTract, County, Urban,
POP2010, LowIncomeTracts, and HUNVFlag variables (columns).

FoodAccess2015_MD <- subset(FoodAccess2015_MD, select = c(CensusTract, County, Urban,
POP2010, LowIncomeTracts,
HUNVFlag))

str(FoodAccess2015_MD, strict.width = "cut")

'data.frame': 1399 obs. of 6 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "240010004"..
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ LowIncomeTracts: num 1 1 1 1 1 1 1 1 1 1 ...
$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...

Let’s see if the data set contains suspicious data. In particular, we should check whether the data for
the census tracts are complete and make sense.

First, let’s verify that there are no missing values with the colSums(is.na()) nested function.

colSums(is.na(FoodAccess2015_MD))

CensusTract County Urban POP2010 LowIncomeTracts
0 0 0 0 0
HUNVFlag
0

The output shows that there are no missing values.

The variable POP2010 reports the number of residents in a census tract. If reported correctly, all
entries should be greater than 0. A census tract with no residents would just not make any sense. The
population should range between 1,800 and 8,000 (U.S. Census Bureau, 2019). To check whether
there are entries without residents, we first search for entries without residents and then count them
with nrow(). nrow() is a function that shows you how many rows are in a data frame.

26 4 Data Import and Wrangling

bad_census_tracts <- subset(FoodAccess2015_MD, POP2010 == 0)

nrow(bad_census_tracts)

[1] 9

It looks like there are nine entries without residents. Let’s see who they are by calling
bad_census_tracts. To shorten the output, we only display the census tract, the county, (columns/-
variables 1 and 2) and POP2010 (variables 4).

bad_census_tracts[,c(1:2, 4)]

CensusTract County POP2010
30065 24005980000 Baltimore 0
30066 24005980100 Baltimore 0
30067 24005980200 Baltimore 0
30191 24019990000 Dorchester 0
30821 24035990100 Queen Anne's 0
30839 24037990000 St. Mary's 0
30847 24039990100 Somerset 0
30924 24047980000 Worcester 0
30925 24047990000 Worcester 0

We remove these tracts by keeping all the entries that have a POP2010 value that is not 0 (hence the
!= operator).

FoodAccess2015_MD_good <- subset(FoodAccess2015_MD, POP2010 != 0)

Calling nrow(subset(FoodAccess2015_MD_good, POP2020 == 0)) should return [1] 0

nrow(subset(FoodAccess2015_MD_good, POP2010 == 0))

[1] 0

And it does.

We are also interested in identifying possible vaccination deserts in Baltimore City, and could subset
the Maryland Food Access data set for Baltimore City. However, at this point the Maryland data set

4.2 Data Manipulation (Wrangling) 27

does not contain any geographic information. The subsection “Merging Data Frames” shows how to
add geographic information to the data set. Once that is done we will create a subset for Baltimore
City.

Census Tracts

The census tract data is for the entire state of Maryland and contains the census tract boundaries (as
polygons). For our purposes, we will combine this data set with the Food Access data set.

Let’s check if all entries do have geographic information (i.e., a geometry entry).

colSums(is.na(MD_CensusTracts_2010))

GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
0 0 0 0 0 0 0
geometry
0

There are no missing values.

Vaccination Sites

The VaccineSites data frame lists COVID-19 vaccination sites in Maryland. To list all the variables
(columns) we can use the function colnames().

colnames(VaccineSites)

[1] "OBJECTID" "facilityid"
[3] "name" "fulladdr"
[5] "Location" "X"
[7] "Y" "municipality"
[9] "CreationDate" "Creator"
[11] "EditDate" "Editor"
[13] "ActiveYesNo" "site_type"
[15] "appt_required" "operationalhours"
[17] "docorder_required" "costfree"
[19] "cost_outpocket" "drivethru"
[21] "pedaccess" "transitAccess"
[23] "test_antigen" "test_antibody"
[25] "other_notes" "insurance_accepted"
[27] "medicaid" "cost_other"
[29] "cost_notes" "test_rapid"
[31] "schedule_url" "online_scheduling"
[33] "scheduling_contact" "scheduling_contact_phone"
[35] "scheduling_contact_email" "test_pcr"

28 4 Data Import and Wrangling

[37] "website_url" "X_coord"
[39] "Y_coord" "test_pediatric"
[41] "multi_language" "test_pediatric_notes"
[43] "created_user" "created_date"
[45] "last_edited_user" "last_edited_date"
[47] "County" "PreRegistrationURL"

The data frame has 48 variables including a variable with GPS information (Location). Let’s check
if all entries have GPS information.

sum(is.na(VaccineSites$Location))

[1] 0

All entries have GPS coordinates.

Remove unwanted variables

The VaccineSites data frame contains information that is not relevant for our analysis. We are
interested in the GPS coordinates (Location), and the name of the facility (name). Furthermore,
information on whether a physician referral is required (docorder_required), whether it is cost-free
(costfree), and whether the facility is accessible by foot (pedaccess) would be interesting in the
context of affordable service.

The following code subsets the VaccineSites data frame for the above variables, and checks whether
data for all variables is available.

VaccineSites_mod <- subset(VaccineSites, select = c("name", "Location", "pedaccess",
"docorder_required", "costfree"))

str(VaccineSites_mod, strict.width = "cut")

'data.frame': 556 obs. of 5 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Lumi"..
$ Location : chr "(38.990512076102, -76.5341664410021)" "(38.982597"..
$ pedaccess : logi NA NA NA NA NA NA ...
$ docorder_required: logi NA NA NA NA NA NA ...
$ costfree : logi NA NA NA NA NA NA ...

colSums(is.na(VaccineSites_mod))

4.2 Data Manipulation (Wrangling) 29

name Location pedaccess docorder_required
0 0 556 556
costfree
556

It turns out that we only have information on the name and coordinates for all facilities. Therefore,
we drop the other variables.

VaccineSites_mod <- subset(VaccineSites, select = c("name", "Location"))

str(VaccineSites_mod, strict.width = "cut")

'data.frame': 556 obs. of 2 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Luminis Healt"..
$ Location: chr "(38.990512076102, -76.5341664410021)" "(38.9825972406456, "..

colSums(is.na(VaccineSites_mod))

name Location
0 0

As so often with R, there are alternative ways to accomplish the same task. R has functions that
remove entries if they have missing values. For example the function na.omit() removes all entries
that have missing values. Another function, complete.cases() removes either all variables or
all rows that have some missing values. We only want to drop variables that only have missing
values. We can do so with the following code. It will remove all variables that only contain missing
values from the subsetted data frame VaccineSites_mod2.

VaccineSites_mod2 <- subset(VaccineSites, select = c("name",
"Location",
"pedaccess",
"docorder_required",
"costfree"))

VaccineSites_mod2 <- VaccineSites_mod2[, colSums(is.na(VaccineSites_mod2))
!= nrow(VaccineSites_mod2)]

colSums(is.na(VaccineSites_mod2))

30 4 Data Import and Wrangling

name Location
0 0

str(VaccineSites_mod2, strict.width = "cut")

'data.frame': 556 obs. of 2 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Luminis Healt"..
$ Location: chr "(38.990512076102, -76.5341664410021)" "(38.9825972406456, "..

Merging Data Frames

MD_CensusTracts_2010 has the geographic boundaries of the census tracts in Maryland. To add the
attributes/properties to the census tracts that will allow us to map census tracts that have limited
access to vaccination sites, and/or are defined as low income, and/or have limited access to a vehicle,
etc. the FoodAccess2015_MD data frame is merged with MD_CensusTracts_2010.

The function merge() allows to combine data frames based on a common variable. Here the common
variable is the census tract. Naturally, the requirement for this function is that both data frames have
one variable in common.

Prepare data frames for merging

Both data frames/objects (FoodAccess2015_MD_good, MD_CensusTracts_2010) have census tract infor-
mation. However, the data frames encode the census tracts differently, and have different variable
names. Furthermore, FoodAccess2015_MB_good has 13 fewer observations (in part because we re-
moved a few observations).

Structure of Food Access
str(FoodAccess2015_MD_good, list.len = 20, strict.width = "cut")

'data.frame': 1390 obs. of 6 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "240010004"..
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ LowIncomeTracts: num 1 1 1 1 1 1 1 1 1 1 ...
$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...

4.2 Data Manipulation (Wrangling) 31

Struture of MD_CensusTracts
str(MD_CensusTracts_2010, list.len = 5, strict.width = "cut")

Classes 'sf' and 'data.frame': 1403 obs. of 8 variables:
$ GEO_ID : chr "1400000US24015031400" "1400000US24017850101" "1400000US2"..
$ STATE : chr "24" "24" "24" "24" ...
$ COUNTY : chr "015" "017" "017" "017" ...
$ TRACT : chr "031400" "850101" "850706" "850710" ...
$ NAME : chr "314" "8501.01" "8507.06" "8507.10" ...
[list output truncated]
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA N..
..- attr(*, "names")= chr [1:7] "GEO_ID" "STATE" "COUNTY" "TRACT" ...

The tract ID of the FoodAccess2015_MD data frame contains the state ID (24), a three-digit county ID
(f.e. 001 for Allegany county), and a six-digit identifier of the census tract which unique within each
county. In contrast, MD_CensusTracts_2010 shows only the six-digit identifier of the census tract in
each county. The two-digit state ID and the three-digit county ID are stored in a separate variable.

FoodAccess2015_MD 24001000100
24001000200
...

MD_CensusTracts_2010 000100
000200
...

Furthermore, the variable name is different (CensusTract vs. TRACT).

The function paste() allows to combine variables (columns). The following code merges the three
variables (columns) STATE, COUNTY and TRACT of the MD_CensusTracts_2010 data frame and puts the
new ID into a new variable (CensusTract)

merge columns
MD_CensusTracts_2010$CensusTract <- paste(MD_CensusTracts_2010$STATE,

MD_CensusTracts_2010$COUNTY,
MD_CensusTracts_2010$TRACT,
sep = "")

The code below checks the class of the modified data frame, and confirms that the
MD_CensusTracts_2010 is still a (spatial) simple feature (sf) object.

32 4 Data Import and Wrangling

class(MD_CensusTracts_2010)

[1] "sf" "data.frame"

Merge data frames

MD_CensusTracts_2010 is a sf object and contains spatial data. When merging with non spatial data
frames, the sf object that contains spatial data has to come first.

MD_CensusTracts_Map <- merge(MD_CensusTracts_2010, FoodAccess2015_MD_good,
by = "CensusTract", all.x = TRUE)

dimension
dim(MD_CensusTracts_Map)

[1] 1403 14

class(MD_CensusTracts_Map)

[1] "sf" "data.frame"

structure (columns 1:13), 14 = geometry
str(MD_CensusTracts_Map[,c(1:13)], list.len = 13, strict.width = "cut")

Classes 'sf' and 'data.frame': 1403 obs. of 14 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "240010004"..
$ GEO_ID : chr "1400000US24001000100" "1400000US24001000200" "14000"..
$ STATE : chr "24" "24" "24" "24" ...
$ COUNTY : chr "001" "001" "001" "001" ...
$ TRACT : chr "000100" "000200" "000300" "000400" ...
$ NAME : chr "1" "2" "3" "4" ...
$ LSAD : chr "Tract" "Tract" "Tract" "Tract" ...
$ CENSUSAREA : num 187.94 48.07 8.66 3.72 4.42 ...
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ LowIncomeTracts: num 1 1 1 1 1 1 1 1 1 1 ...

4.2 Data Manipulation (Wrangling) 33

$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...
[list output truncated]
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA N..
..- attr(*, "names")= chr [1:13] "CensusTract" "GEO_ID" "STATE" "COUNTY" ...

The by = "CensusTract" argument of the merge() function merges the data frames based on the
variable CensusTract. The argument all.x = TRUE will keep all entries of the first data frame and
will add missing values if there is no match of the common variable (CensusTract) in the 2nd data
frame. Entries that do have a matching CensusTract in the first data frame are excluded.

We should have at least 13 entries with missing data.

colSums(is.na(MD_CensusTracts_Map))

CensusTract GEO_ID STATE COUNTY TRACT
0 0 0 0 0
NAME LSAD CENSUSAREA County Urban
0 0 0 13 13
POP2010 LowIncomeTracts HUNVFlag geometry
13 13 13 0

Indeed, we have 13 entries with missing values. These census tracts will be mapped as having “no
data.”

Subset for Baltimore City

Last, we extract the data for Baltimore City from the MD_CensusTracts_Map data set. We can subset
using the last three digits of the FIPS county code (stored in the variable COUNTY), which for Baltimore
City is 510.

BC_CensusTracts_Map <- subset(MD_CensusTracts_Map, COUNTY == "510")

str(BC_CensusTracts_Map, list.len = 13, strict.width = "cut")

Classes 'sf' and 'data.frame': 200 obs. of 14 variables:
$ CensusTract : chr "24510010100" "24510010200" "24510010300" "245100104"..
$ GEO_ID : chr "1400000US24510010100" "1400000US24510010200" "14000"..
$ STATE : chr "24" "24" "24" "24" ...
$ COUNTY : chr "510" "510" "510" "510" ...
$ TRACT : chr "010100" "010200" "010300" "010400" ...
$ NAME : chr "101" "102" "103" "104" ...
$ LSAD : chr "Tract" "Tract" "Tract" "Tract" ...
$ CENSUSAREA : num 0.152 0.137 0.26 0.144 0.06 0.067 0.076 0.256 0.165 0..

34 4 Data Import and Wrangling

$ County : chr "Baltimore City" "Baltimore City" "Baltimore City" ""..
$ Urban : num 1 1 1 1 1 1 1 1 1 1 ...
$ POP2010 : num 3022 3009 2208 2870 1724 ...
$ LowIncomeTracts: num 0 0 0 0 0 0 0 0 1 1 ...
$ HUNVFlag : num 0 0 0 0 0 0 0 0 1 0 ...
[list output truncated]
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA N..
..- attr(*, "names")= chr [1:13] "CensusTract" "GEO_ID" "STATE" "COUNTY" ...

colSums(is.na(BC_CensusTracts_Map))

CensusTract GEO_ID STATE COUNTY TRACT
0 0 0 0 0
NAME LSAD CENSUSAREA County Urban
0 0 0 0 0
POP2010 LowIncomeTracts HUNVFlag geometry
0 0 0 0

Baltimore City has 200 entries, and there are no missing values.

Chapter 5
Spatial Analysis — Part 1

This section introduces spatial analysis and mapping with R. It covers creation of spatial data,
manipulation of spatial data, and mapping.

Creation and Manipulation of Spatial Data

Most manipulations are performed with functions from the sf package which is attached with the
call library(sf).

library(sf)

Conversion of non-spatial data into a (spatial) simple feature (sf) object

In Section 4.2 we created a smaller data frame of vaccination sites in Maryland (VaccineSites_mod).
It is a non-spatial data frame that contains GPS coordinates in the variable Location. The format is
(latitude, longitude).

str(VaccineSites_mod, strict.width = "cut")

'data.frame': 556 obs. of 2 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Luminis Healt"..
$ Location: chr "(38.990512076102, -76.5341664410021)" "(38.9825972406456, "..

'data.frame': 556 obs. of 2 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Luminis Health"..
$ Location: chr "(38.990512076102, -76.5341664410021)" "(38.9825972406456, -"..")

Since the data frame has geometric information, it can be converted into a sf (simple feature)
object with the function st_as_sf() from the sf package. sf objects contain non-spatial attributes

35

36 5 Spatial Analysis — Part 1

(variables/columns) and spatial features (geometries) associated with the attributes (Pebesma &
Bivand, 2021, Chapter 7). However, first we have to convert the geometric information into a format
that sf can read.

st_as_sf() takes coordinates (in separate variables) and converts them into a single geometry (list)
column. We therefore modify the Location variable, and split the variable into a lon and a lat

variable that contain the longitude and latitude coordinates (as numbers), respectively.

Copy VaccineSites_mod into new object
VaccineSites_mod2 <- VaccineSites_mod

Remove round brackets
VaccineSites_mod2$Location <- gsub("[(]|[)]", "", VaccineSites_mod2$Location)

Split columns
VaccineSites_mod2 <- tidyr::separate(VaccineSites_mod2, Location, c("lat", "lon"),

sep = ", ", remove = TRUE, convert = TRUE)

str(VaccineSites_mod2, strict.width = "cut")

'data.frame': 556 obs. of 3 variables:
$ name: chr "Luminis Health Anne Arundel Medical Center" "Luminis Health Do"..
$ lat : num 39 39 39.3 39.6 39.2 ...
$ lon : num -76.5 -76.9 -76.6 -77 -76.9 ...

'data.frame': 556 obs. of 3 variables:
$ name: chr "Luminis Health Anne Arundel Medical Center" "Luminis Health Doctors ...
$ lon : num -76.5 -76.9 -76.6 -77 -76.9 ...

The first line of the code copies the original data frame into a new object (VaccineSites_mod2). The
next line removes the () from the entries in Location using a regex expression and the function
gsub(). The regex identifies round brackets. gsub() substitutes the round brackets with no space
(""). The 3rd line splits the variable into two variables (lat for latitude, and lon for longitude)
with the function separate() from the package tidyr. The call tidyr::separate() allows to call
the function separate() without attaching the package (tidyr). The original variable Location is
removed (remove = TRUE), and the GPS coordinates are converted into real numbers (convert =

TRUE).

Now we can use st_as_sf() to convert the coordinate variables into a single geometry column. GPS
coordinates are based on the WGS 84 CRS (EPSG:4326), which is assigned to the geometries with the
argument crs = 4326. Note, that coordinates in a sf geometry follow a lon, lat format.

37

VaccineSites_sf <- st_as_sf(VaccineSites_mod2,
coords = c("lon","lat"),
crs = 4326)

VaccineSites_sf

Simple feature collection with 556 features and 1 field
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -79.40422 ymin: 37.99461 xmax: -75.11762 ymax: 39.7205
Geodetic CRS: WGS 84
First 10 features:
name
1 Luminis Health Anne Arundel Medical Center
2 Luminis Health Doctors Community Medical Center
3 Grace Medical Center (formerly Bon Secours Hospital)
4 Carroll Hospital Center
5 Howard County General Hospital
6 Holy Cross Hospital
7 MedStar Good Samaritan Hospital
8 MedStar Harbor Hospital
9 Greater Baltimore Medical Center
10 MedStar Southern Maryland Hospital Center
geometry
1 POINT (-76.53417 38.99051)
2 POINT (-76.86539 38.9826)
3 POINT (-76.64888 39.28823)
4 POINT (-76.99063 39.55787)
5 POINT (-76.88587 39.21429)
6 POINT (-77.03653 39.01438)
7 POINT (-76.58784 39.35864)
8 POINT (-76.6152 39.25186)
9 POINT (-76.62761 39.39109)
10 POINT (-76.87562 38.74815)

Changing Coordinate References Systems (Re-projection)

As mentioned in Section 2.3, spatial analyses involving distances require a projected coordinate
reference system (CRS) with linear distance units (meter, US survey feet, etc.). For Maryland we use
the NAD83(2011) Maryland CRS (EPSG:6487). It uses a Lambert Conformal Conic projection (lcc)
and meters.

38 5 Spatial Analysis — Part 1

The function st_transform() from the sf package re-projects coordinates of simple feature objects.

VaccineSites_6487 <- st_transform(VaccineSites_sf, crs = 6487)

VaccineSites_6487

Simple feature collection with 556 features and 1 field
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 192974.5 ymin: 37051.97 xmax: 564558.6 ymax: 228199.9
Projected CRS: NAD83(2011) / Maryland
First 10 features:
name
1 Luminis Health Anne Arundel Medical Center
2 Luminis Health Doctors Community Medical Center
3 Grace Medical Center (formerly Bon Secours Hospital)
4 Carroll Hospital Center
5 Howard County General Hospital
6 Holy Cross Hospital
7 MedStar Good Samaritan Hospital
8 MedStar Harbor Hospital
9 Greater Baltimore Medical Center
10 MedStar Southern Maryland Hospital Center
geometry
1 POINT (440356.8 147055.9)
2 POINT (411663 146082.9)
3 POINT (430291.3 180062.2)
4 POINT (400805 209940)
5 POINT (409856.7 171801.7)
6 POINT (396836.2 149602.8)
7 POINT (435522.7 187900.9)
8 POINT (433214.1 176036.3)
9 POINT (432080.3 191488.2)
10 POINT (410811.8 120056.4)

In Section 4.1 — Maryland Counties (Physical) Boundaries we already read in a map showing the
boundaries of Maryland’s counties (MD_counties_map).

MD_counties_map

Simple feature collection with 24 features and 7 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -8848486 ymin: 4564403 xmax: -8354439 ymax: 4825752
Projected CRS: WGS 84 / Pseudo-Mercator

39

First 10 features:
OBJECTID COUNTY DISTRICT COUNTY_FIP COUNTYNUM CREATION_D LAST_UPDAT
1 1 Allegany 6 1 1 2010-01-28 2010-01-28
2 2 Anne Arundel 5 3 2 2006-04-18 2006-04-18
3 3 Baltimore 4 5 3 2006-10-09 2006-10-09
4 4 Baltimore City 0 510 24 2006-04-18 2009-11-16
5 5 Calvert 5 9 4 2010-01-28 2010-01-28
6 6 Caroline 2 11 5 2007-05-21 2008-07-30
7 7 Carroll 7 13 6 2008-06-16 2012-01-17
8 8 Cecil 2 15 7 2006-04-18 2008-08-20
9 9 Charles 5 17 8 2009-06-08 2009-06-08
10 10 Dorchester 1 19 9 2007-02-08 2007-02-22
geometry
1 MULTIPOLYGON (((-8721085 48...
2 MULTIPOLYGON (((-8527741 47...
3 MULTIPOLYGON (((-8523507 48...
4 MULTIPOLYGON (((-8519244 47...
5 MULTIPOLYGON (((-8531762 46...
6 MULTIPOLYGON (((-8432189 47...
7 MULTIPOLYGON (((-8556981 47...
8 MULTIPOLYGON (((-8441053 48...
9 MULTIPOLYGON (((-8580309 46...
10 MULTIPOLYGON (((-8439760 46...

The output tells us that the data set is using a projected CRS based on the WGS 84 CRS with a
pseudo-mercator projection.

To map, all data objects need to have the same CRS. We therefore re-project the MD_counties_map to
the NAD83(2011) Maryland CRS (EPSG:6487).

MD_counties_6487 <- st_transform(MD_counties_map, crs = 6487)

MD_counties_6487

Simple feature collection with 24 features and 7 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 185218.2 ymin: 25771.53 xmax: 570274.7 ymax: 230947
Projected CRS: NAD83(2011) / Maryland
First 10 features:
OBJECTID COUNTY DISTRICT COUNTY_FIP COUNTYNUM CREATION_D LAST_UPDAT
1 1 Allegany 6 1 1 2010-01-28 2010-01-28
2 2 Anne Arundel 5 3 2 2006-04-18 2006-04-18
3 3 Baltimore 4 5 3 2006-10-09 2006-10-09
4 4 Baltimore City 0 510 24 2006-04-18 2009-11-16
5 5 Calvert 5 9 4 2010-01-28 2010-01-28
6 6 Caroline 2 11 5 2007-05-21 2008-07-30
7 7 Carroll 7 13 6 2008-06-16 2012-01-17
8 8 Cecil 2 15 7 2006-04-18 2008-08-20

40 5 Spatial Analysis — Part 1

9 9 Charles 5 17 8 2009-06-08 2009-06-08
10 10 Dorchester 1 19 9 2007-02-08 2007-02-22
geometry
1 MULTIPOLYGON (((284864.2 22...
2 MULTIPOLYGON (((434019 1735...
3 MULTIPOLYGON (((437063.4 22...
4 MULTIPOLYGON (((440528 1894...
5 MULTIPOLYGON (((431100.8 12...
6 MULTIPOLYGON (((508262.9 16...
7 MULTIPOLYGON (((411297.8 20...
8 MULTIPOLYGON (((500588 2260...
9 MULTIPOLYGON (((393194.3 11...
10 MULTIPOLYGON (((503022.8 11...

5.1 First Maps

Lets plot the vaccination sites onto a map of Maryland counties using tmap. tmap is a R package
designed to create thematic maps to visualize spatial distributions. It uses a layer based approach.
Every map starts with tm_shape(). tm_shape() defines the extension of the map and which method
can be used to draw the features. It is followed by other layer elements, such as tm_fill() (which
colors polygons), tm_borders() (which outlines polygons), or tm_symbols (which plots markers and
symbols), to name a few (Lovelace et al., 2021, Chapter 8). Each layer can be stored in or assigned
to an object that can be called separately.

Mapping Vaccination Sites

To start, we create a “base map” of Maryland’s counties that is stored in the object map_MD_counties.
tm_shape() is called to create a layer based on the shape object MD_counties_6487. tm_polygon()
plots the polygons defined in MD_counties_6487. We could use the argument “MAP_COLORS” to color
the counties as it attempts to color the polygons in such a way that neighboring polygons have
different colors. However, it does not work too well for our data set. Furthermore, its color attribution
is not consistent. Therefore, we will define our own color scheme that is based on the color palette
GnBu from the RColorBrewer package.

library(tmap)
library(RColorBrewer)

#Define colors
(cols <- brewer.pal(brewer.pal.info["GnBu", "maxcolors"], "GnBu"))

mypal <- c(cols[1], cols[4], cols[3], cols[5], cols[3],
cols[1], cols[4], cols[4], cols[5], cols[4],
cols[2], cols[2], cols[1], cols[5], cols[5],
cols[3], cols[1], cols[3], cols[1], cols[4],

5.1 First Maps 41

cols[5], cols[4], cols[3], cols[4])

map counties
map_MD_counties <- tm_shape(MD_counties_6487) +

tm_polygons(col = "COUNTY",
palette = mypal,
legend.show = FALSE)

map_MD_counties

map_MD_counties plots the map and you should see a plot similar to Figure 5.1 A.

Create a directory figures in your project directory. Save the map of the county with tmap_save()

as a .png file (map_MD_counties.png) in the directory figures (within the current working directory):

save to png
tmap_save(map_MD_counties, filename = "figures/map_MD_counties.png")

Then we create a layer that has the labels of the counties. The layer is assigned to the object
MD_counties_label. Again, tm_shape(MD_counties_6487) is called. tm_text plots the name of the
counties (listed in the variable COUNTY of the MD_counties_6487 data set). We set the text color to brown

(argument col), and the size to 0.75. We plot the labels by calling the object MD_counties_label. A
plot similar to Figure 5.1 B should be produced.

#label
MD_counties_label <- tm_shape(MD_counties_6487) +

tm_text("COUNTY",
col = "brown",
size = 0.75)

MD_counties_label

Last, we create a layer with the vaccination sites and store the layer in the object map_VaccineSites.
tm_shape() is called again to create the layer based on the VaccineSites_6487 object. The geometric
features of this layer are points. The points are plotted with the function tm_symbols(). The shape

argument plots symbols available to R (shape 0 to 25). The fill color, outline (border) color, and line
width of the outline of shapes 21 to 25 can be changed with the arguments col, border.col, and
border.lwd. respectively (Figure 5.1 D). For the vaccine sites (Figures 5.1 C, 5.2, and 5.3) the fill
color is set to green, the outline color to red, and the line width to 1. Calling map_VaccineSites

should plot a plot similar to Figure 5.1 C.

42 5 Spatial Analysis — Part 1

FIGURE 5.1. A. Map of Maryland counties. B. Plot showing the names of the counties. C. Plot of the
vaccination sites in Maryland (on April 4, 2021). D. Plotting symbols in R.

We can put together the final map by calling the layers, and add a legend with tmap_add_label().

MD_vac1 <- map_MD_counties +
MD_counties_label +
map_VaccineSites +
tm_add_legend(type = "symbol",

shape = 25,
size = 0.75,
col = "green",
border.col = "red",
label = "COVID-19 Vaccination Site") +

tm_layout(legend.text.size = 1)

MD_vac1

tm_add_legends() adds (manually) a legend to the plot. We just want to indicate what the plotted
symbols stand for (i.e, COVID-19 Vaccination Sites). Therefore, the type is set to "symbol." We
define the shape, fill and outline color (copy the respective parameters (arguments) from tm_symbols),
and the size of the symbol for the legend. label adds the legend text ("COVID-19 Vaccination Site").
The last function, tm_layout() allows to fine tune the plot. Here we only specify the size of the
legend label. The last line (MD_vac1) plots the map. The plot should look similar to the plot in Figure
5.2.

5.1 First Maps 43

FIGURE 5.2. Location of COVID-19 vaccination sites in Maryland (last updated: April 4, 2021)

Save the plot as a .png file (MD_vac_sites.png) in the directory figures (within the current working
directory).

save to png
tmap_save(MD_vac1, filename = "figures/MD_vac_sites.png")

The map shows that there are clusters of vaccination sites in the I-95 and I-270 corridors. Rural
areas seem to be less covered. To check we can add urban census tracts to the plot. The data frame
MD_CensusTracts_Map has all the information we need. However, its CRS is NAD83.

MD_CensusTracts_Map

Simple feature collection with 1403 features and 13 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -79.48765 ymin: 37.91172 xmax: -75.04894 ymax: 39.72304
Geodetic CRS: NAD83
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
1 24001000100 1400000US24001000100 24 001 000100 1 Tract 187.937
2 24001000200 1400000US24001000200 24 001 000200 2 Tract 48.067
3 24001000300 1400000US24001000300 24 001 000300 3 Tract 8.656
4 24001000400 1400000US24001000400 24 001 000400 4 Tract 3.723

44 5 Spatial Analysis — Part 1

5 24001000500 1400000US24001000500 24 001 000500 5 Tract 4.422
6 24001000600 1400000US24001000600 24 001 000600 6 Tract 1.577
7 24001000700 1400000US24001000700 24 001 000700 7 Tract 0.712
8 24001000800 1400000US24001000800 24 001 000800 8 Tract 1.255
9 24001001000 1400000US24001001000 24 001 001000 10 Tract 0.448
10 24001001100 1400000US24001001100 24 001 001100 11 Tract 0.301
County Urban POP2010 LowIncomeTracts HUNVFlag
1 Allegany 0 3718 1 0
2 Allegany 0 4564 1 0
3 Allegany 0 2780 1 0
4 Allegany 1 3022 1 0
5 Allegany 1 2734 1 0
6 Allegany 1 2965 1 0
7 Allegany 1 3387 1 1
8 Allegany 1 2213 1 1
9 Allegany 1 2547 1 0
10 Allegany 1 1493 1 0
geometry
1 MULTIPOLYGON (((-78.42058 3...
2 MULTIPOLYGON (((-78.71775 3...
3 MULTIPOLYGON (((-78.72077 3...
4 MULTIPOLYGON (((-78.70206 3...
5 MULTIPOLYGON (((-78.75435 3...
6 MULTIPOLYGON (((-78.74107 3...
7 MULTIPOLYGON (((-78.75033 3...
8 MULTIPOLYGON (((-78.76588 3...
9 MULTIPOLYGON (((-78.77711 3...
10 MULTIPOLYGON (((-78.76443 3...

We re-project MD_CensusTracts_Map to NAD83(2011) Maryland (EPSG:6487).

MD_CensusTracts_6487 <- st_transform(MD_CensusTracts_Map, crs = 6487)

MD_CensusTracts_6487

Simple feature collection with 1403 features and 13 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 185230.9 ymin: 27801.06 xmax: 570294.2 ymax: 230941.9
Projected CRS: NAD83(2011) / Maryland
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
1 24001000100 1400000US24001000100 24 001 000100 1 Tract 187.937
2 24001000200 1400000US24001000200 24 001 000200 2 Tract 48.067
3 24001000300 1400000US24001000300 24 001 000300 3 Tract 8.656
4 24001000400 1400000US24001000400 24 001 000400 4 Tract 3.723
5 24001000500 1400000US24001000500 24 001 000500 5 Tract 4.422
6 24001000600 1400000US24001000600 24 001 000600 6 Tract 1.577
7 24001000700 1400000US24001000700 24 001 000700 7 Tract 0.712

5.1 First Maps 45

8 24001000800 1400000US24001000800 24 001 000800 8 Tract 1.255
9 24001001000 1400000US24001001000 24 001 001000 10 Tract 0.448
10 24001001100 1400000US24001001100 24 001 001100 11 Tract 0.301
County Urban POP2010 LowIncomeTracts HUNVFlag
1 Allegany 0 3718 1 0
2 Allegany 0 4564 1 0
3 Allegany 0 2780 1 0
4 Allegany 1 3022 1 0
5 Allegany 1 2734 1 0
6 Allegany 1 2965 1 0
7 Allegany 1 3387 1 1
8 Allegany 1 2213 1 1
9 Allegany 1 2547 1 0
10 Allegany 1 1493 1 0
geometry
1 MULTIPOLYGON (((277992.7 21...
2 MULTIPOLYGON (((252677.1 22...
3 MULTIPOLYGON (((252464.7 22...
4 MULTIPOLYGON (((253978.3 22...
5 MULTIPOLYGON (((249423 2212...
6 MULTIPOLYGON (((250523.8 21...
7 MULTIPOLYGON (((249749.1 22...
8 MULTIPOLYGON (((248425.6 22...
9 MULTIPOLYGON (((247506.5 22...
10 MULTIPOLYGON (((248561.4 22...

For the map we are only interested in urban census tracts. We extract the urban tracts from
MD_CensusTracts_6487 (Urban == 1), and re-draw the map. Urban tracts are highlighted in orange.

Filter out urban centers
urban_tracts <- subset(MD_CensusTracts_6487, Urban == 1)

urban_tracts

Map urban tracts
Layer for urban tracts
map_urban_tracts <- tm_shape(urban_tracts) +

tm_fill(col = "orange")

save as png
tmap_save(map_urban_tracts, filename = "figures/map_urban_tracts.png")

Compile the map.

MD_vac2 <- map_MD_counties +
map_urban_tracts +
MD_counties_label +
map_VaccineSites +

46 5 Spatial Analysis — Part 1

tm_add_legend(type = "symbol",
shape = c(22, 25),
size = c(1, 0.75),
col = c("orange", "green"),
border.col = c("black", "red"),
label = c("Urban Census Tract",

"COVID-19 Vaccination Site")) +
tm_layout(legend.text.size = 1)

MD_vac2

save to png
tmap_save(MD_vac2, filename = "figures/MD_vac2_sites_census_tract.png")

We added an orange square (symbol 22) in tm_add_legend()

tm_add_legend(type = "symbol",
shape = c(22, 25),
size = c(1, 0.75),
col = c("orange", "green"),
border.col = c("black", "red"),
label = c("Urban Census Tract",

"COVID-19 Vaccination Site"))

Calling Map_vac2 should produce a plot similar to Figure 5.3.

FIGURE 5.3. Location of COVID-19 vaccination sites in Maryland (last updated: April 4, 2021).
Urban census tracts are highlighted in orange.

5.2 Manipulating Geometries 47

5.2 Manipulating Geometries

The sf package has functions that allow us to manipulate the spatial features of a sf object, including

• identify features based on their spatial relation to other features,
• clip geometries, and
• merge geometries.

Identify spatial features based on spatial relations to other features

To identify or visualize vaccination sites in rural and urban centers, we plotted urban tracts onto the
vaccination site map. Alternatively, we can extract vaccination sites that are located in rural tracts
and urban centers with the function st_intersection().

We already created a sf object that features urban census tracts (urban_tracts). Lets also create a sf

object for rural census tracts.

rural_tracts <- subset(MD_CensusTracts_6487, Urban == 0)

The following lines of code identify the vaccination sites that are located within or on the border of
urban and rural census tracts, respectively. You will likely see warnings. They can be ignored.

vac_urban <- st_intersection(urban_tracts, VaccineSites_6487)

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

vac_urban

Simple feature collection with 494 features and 14 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 192974.5 ymin: 46073.83 xmax: 560461.9 ymax: 224285.4
Projected CRS: NAD83(2011) / Maryland
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD
40 24003702701 1400000US24003702701 24 003 702701 7027.01 Tract
1070 24033806711 1400000US24033806711 24 033 806711 8067.11 Tract
1301 24510200100 1400000US24510200100 24 510 200100 2001 Tract

48 5 Spatial Analysis — Part 1

394 24013507801 1400000US24013507801 24 013 507801 5078.01 Tract
629 24027605602 1400000US24027605602 24 027 605602 6056.02 Tract
829 24031703901 1400000US24031703901 24 031 703901 7039.01 Tract
1369 24510270803 1400000US24510270803 24 510 270803 2708.03 Tract
1323 24510250203 1400000US24510250203 24 510 250203 2502.03 Tract
314 24005490605 1400000US24005490605 24 005 490605 4906.05 Tract
926 24033801207 1400000US24033801207 24 033 801207 8012.07 Tract
CENSUSAREA County Urban POP2010 LowIncomeTracts HUNVFlag
40 1.812 Anne Arundel 1 4815 0 0
1070 0.548 Prince George's 1 5146 1 0
1301 0.102 Baltimore City 1 1846 1 1
394 2.423 Carroll 1 5652 0 1
629 2.809 Howard 1 7610 0 0
829 0.554 Montgomery 1 2957 0 0
1369 0.845 Baltimore City 1 6268 1 0
1323 0.357 Baltimore City 1 2018 1 1
314 0.844 Baltimore 1 5182 1 0
926 3.141 Prince George's 1 4432 0 0
name
40 Luminis Health Anne Arundel Medical Center
1070 Luminis Health Doctors Community Medical Center
1301 Grace Medical Center (formerly Bon Secours Hospital)
394 Carroll Hospital Center
629 Howard County General Hospital
829 Holy Cross Hospital
1369 MedStar Good Samaritan Hospital
1323 MedStar Harbor Hospital
314 Greater Baltimore Medical Center
926 MedStar Southern Maryland Hospital Center
geometry
40 POINT (440356.8 147055.9)
1070 POINT (411663 146082.9)
1301 POINT (430291.3 180062.2)
394 POINT (400805 209940)
629 POINT (409856.7 171801.7)
829 POINT (396836.2 149602.8)
1369 POINT (435522.7 187900.9)
1323 POINT (433214.1 176036.3)
314 POINT (432080.3 191488.2)
926 POINT (410811.8 120056.4)

vac_rural <- st_intersection(rural_tracts, VaccineSites_6487)

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

5.2 Manipulating Geometries 49

vac_rural

Simple feature collection with 62 features and 14 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 219869 ymin: 37051.97 xmax: 564558.6 ymax: 228199.9
Projected CRS: NAD83(2011) / Maryland
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD
353 24009860702 1400000US24009860702 24 009 860702 8607.02 Tract
1091 24035810400 1400000US24035810400 24 035 810400 8104 Tract
1106 24037875500 1400000US24037875500 24 037 875500 8755 Tract
1120 24039930300 1400000US24039930300 24 039 930300 9303 Tract
1198 24047951300 1400000US24047951300 24 047 951300 9513 Tract
366 24011955301 1400000US24011955301 24 011 955301 9553.01 Tract
465 24019970702 1400000US24019970702 24 019 970702 9707.02 Tract
1129 24041960501 1400000US24041960501 24 041 960501 9605.01 Tract
1185 24045010702 1400000US24045010702 24 045 010702 107.02 Tract
1194 24047950900 1400000US24047950900 24 047 950900 9509 Tract
CENSUSAREA County Urban POP2010 LowIncomeTracts HUNVFlag
353 9.430 Calvert 0 2974 1 0
1091 47.327 Queen Anne's 0 6053 0 0
1106 34.068 St. Mary's 0 8631 0 1
1120 88.028 Somerset 0 2539 1 0
1198 5.936 Worcester 0 2816 1 0
366 42.331 Caroline 0 4111 0 0
465 43.137 Dorchester 0 3987 0 0
1129 22.790 Talbot 0 4752 0 0
1185 27.469 Wicomico 0 8671 1 1
1194 26.689 Worcester 0 2017 0 0
name geometry
353 Calvert County Health Department POINT (435102 99044.7)
1091 Queen Anne's County Health Department POINT (481028.7 153466.8)
1106 Saint Mary's County Health Department POINT (431747.9 70311.09)
1120 Somerset County Health Department POINT (513236.4 51719.08)
1198 Worcester County Health Department POINT (542330.9 57518.24)
366 Walmart Denton POINT (502252.9 134723)
465 Walmart Cambridge POINT (482594.3 98828.14)
1129 Walmart Easton POINT (482184.2 123210.8)
1185 Walmart Salisbury POINT (524947.9 84315.16)
1194 Walmart Berlin POINT (560573.2 76351.68)

Sixty-two vaccination sites are in rural tracts, and 494 in urban tracts. Let’s see how many vaccination
sites per 100,000 (or in scientific notation 1e05) residents are in rural and urban tracts (based on
population data from the 2010 census). The variable POP2010 lists the total number of residents in
each tract. The number of vaccination sites for each subset equals the number of entries and can be
displayed with nrow(). nrow() lists the number of rows of a data frame.

50 5 Spatial Analysis — Part 1

rural_pop_100k <- nrow(vac_rural)/sum(vac_rural$POP2010)*1e05

rural_pop_100k

[1] 21.07353

urban_pop_100k <- nrow(vac_urban)/sum(vac_urban$POP2010)*1e05

urban_pop_100k

[1] 21.07604

The result suggests that based on the plain number of vaccination sites, rural and urban tracts are
overall equally covered. Rural tracts have 21.07 vaccination sites per 100,000 residents, and urban
tracts 21.08.

To visualize, we map the urban and rural vaccination sites (green inverted triangles (symbol 25):
urban, blue diamonds (symbol 23): rural sites; for symbols, see Figure 5.1 D). We compile the map
as we have done before. First, we create map layers for the urban and rural vaccination sites. Then
we add these two layers to the county map featuring urban tracts.

map_vac_urban <- tm_shape(vac_urban) +
tm_symbols(shape = 25,

size =0.3,
col = "green",
border.col = "red",
border.lwd = 1)

map_vac_rural <- tm_shape(vac_rural) +
tm_symbols(shape = 23,

size =0.3,
col = "blue",
border.col = "red",
border.lwd = 1)

MD_vac3 <- map_MD_counties +
map_urban_tracts +
MD_counties_label +
map_vac_urban +
map_vac_rural +
tm_add_legend(type = "symbol",

shape = c(22, 25, 23),

5.2 Manipulating Geometries 51

size = c(1, 0.75, 0.75),
col = c("orange", "green", "blue"),
border.col = c("black", "red", "red"),
label = c("Urban Census Tract",

"Urban COVID-19 Vaccination Site",
"Rural COVID-19 Vaccination Site")) +

tm_layout(legend.text.size = 1)

#call map
MD_vac3

save to png
tmap_save(MD_vac3, filename = "figures/MD_vac3_urban_rural.png")

The code should print a map similar to Figure 5.4.

FIGURE 5.4. Location of COVID-19 vaccination sites in urban and rural census tracts in Maryland
(last updated: April 4, 2021). Urban tracts are highlighted in orange.

Chapter 6
Spatial Analysis — Part 2

In the previous section we have created maps that show the locations of vaccination sites in rural and
urban census tracts.

That required us to:

• filter spatial objects,
• identify and extract spatial feature based on their spatial relation to other spatial features, and
• map (visualize) these features.

In this section we expand our analysis and assess rural communities in a selected county in Maryland
and Baltimore City for the potential presence of vaccination deserts. Per our definition, a low-income
census tract qualifies as a vaccination desert if 33% of its area is outside a 0.5 mile (urban) or 10
mile (rural) range of the vaccination site (Section 1.1).

Conceptually we need to identify:

1. low-income census tracts that are outside of a certain range of a vaccination site, and

2. low-income tracts that have less than 33% of their area within the range of a vaccination site.

To identify these tracts, we need to further manipulate spatial objects, including:

• merge spatial features,
• buffer,
• clip, and
• perform simple mathematical operations on spatial features.

Before we continue, let us create a Maryland state boundary map and a map containing county
boundaries. For the latter, read in the shapefile MD_counties_CT.shp. This map contains boundaries
of the counties of Maryland. I created the file by extracting all counties from the census tract map
(MD_CensusTracts_6487), and unifying the census tracts of each county. The Maryland state boundary
map is created by unifying the census tracts of the entire state. The following script produces these
maps that should look similar to the maps in Figure 6.1.

53

54 6 Spatial Analysis — Part 2

MD_counties <- st_read("data/MD_counties_CT.shp")

draw Map (Fig. 6.1 A)
map_MD_counties <- tm_shape(MD_counties) +

tm_borders()

map_MD_counties

create MD_state (Fig. 6.1 B)
MD_state <- st_union(MD_counties)

draw Map
map_MD_state <- tm_shape(MD_state) +

tm_fill(col = "antiquewhite") +
tm_borders()

map_MD_state

FIGURE 6.1. Map of political boundaries of Maryland, based on census tract boundaries. A. County
boundaries. B. State boundaries.

6.1 Identification of Possible Rural Vaccination Deserts

To identify areas with limited access to vaccination sites, we first create a 10-mile buffer around
all Maryland vaccination sites (listed in VaccineSites_6487) with the function st_buffer(). The
CRS of our maps uses meter. Thus, we need to convert miles to meter. One mile is approximately
1.690344 meters. Ten miles are therefore 16,093 meters, which is provided to the dist argument
of st_buffer(). We join (unify) overlapping buffers with st_union(), and crop (clip) the ten mile
ranges with st_intersection() to the state boundaries of Maryland.

6.1 Identification of Possible Rural Vaccination Deserts 55

create a 10 mi buffer
vac_10mi <- st_buffer(VaccineSites_6487, dist = 1.609344*1e04)

join/unify overlapping buffers
vac_10mi_union <- st_union(vac_10mi)

clip/crop
vac_10mi_state <- st_intersection(MD_state, vac_10mi_union)

Next we plot Maryland’s vaccination sites with the ten-mile buffer onto the counties “base map”
(map_MD_counties). The alpha argument of the tm_fill() function sets a transparency level. One
would mean no transparency (100% opacity), and zero 100% transparency (0% opacity). We set it to
65% (alpha = 0.35). The code produces a map similar to Figure 6.2.

draw map
map_vac_10mi_md <- map_MD_counties +

tm_shape(vac_10mi_state) +
tm_fill(col = "orange",

alpha = 0.35) +
tm_borders(col = "red") +
map_VaccineSites

map_vac_10mi_md

FIGURE 6.2. Vaccination sites with a 10 mi buffer, clipped to the Maryland state border.

56 6 Spatial Analysis — Part 2

Now we identify low-income rural census tracts. We subset MD_CensusTracts_6487 for Urban == 0

and LowIncomeTracts == 1.

rural_LowIncome <- subset(MD_CensusTracts_6487, Urban == 0 & LowIncomeTracts == 1)

rural_LowIncome

Simple feature collection with 55 features and 13 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 185230.9 ymin: 27801.06 xmax: 547910.5 ymax: 230941.9
Projected CRS: NAD83(2011) / Maryland
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD
1 24001000100 1400000US24001000100 24 001 000100 1 Tract
2 24001000200 1400000US24001000200 24 001 000200 2 Tract
3 24001000300 1400000US24001000300 24 001 000300 3 Tract
15 24001001502 1400000US24001001502 24 001 001502 15.02 Tract
16 24001001503 1400000US24001001503 24 001 001503 15.03 Tract
20 24001001900 1400000US24001001900 24 001 001900 19 Tract
21 24001002000 1400000US24001002000 24 001 002000 20 Tract
23 24001002200 1400000US24001002200 24 001 002200 22 Tract
299 24005451900 1400000US24005451900 24 005 451900 4519 Tract
353 24009860702 1400000US24009860702 24 009 860702 8607.02 Tract
CENSUSAREA County Urban POP2010 LowIncomeTracts HUNVFlag
1 187.937 Allegany 0 3718 1 0
2 48.067 Allegany 0 4564 1 0
3 8.656 Allegany 0 2780 1 0
15 9.148 Allegany 0 2055 1 0
16 11.539 Allegany 0 1968 1 0
20 24.855 Allegany 0 2623 1 0
21 26.800 Allegany 0 5552 1 1
23 23.497 Allegany 0 3874 1 0
299 5.187 Baltimore 0 2445 1 0
353 9.430 Calvert 0 2974 1 0
geometry
1 MULTIPOLYGON (((277992.7 21...
2 MULTIPOLYGON (((252677.1 22...
3 MULTIPOLYGON (((252464.7 22...
15 MULTIPOLYGON (((243626.5 22...
16 MULTIPOLYGON (((241785.2 22...
20 MULTIPOLYGON (((234463.9 22...
21 MULTIPOLYGON (((241888.4 21...
23 MULTIPOLYGON (((231767.6 19...
299 MULTIPOLYGON (((456497.8 17...
353 MULTIPOLYGON (((434677 1017...

There are 55 census tracts that qualify. The code below plots these tracts onto the map (Figure 6.3).

6.1 Identification of Possible Rural Vaccination Deserts 57

map_Rural_LowIncome_md <- map_MD_counties +
tm_shape(rural_LowIncome) +
tm_fill(col = "red",

alpha = 0.75) +
tm_shape(vac_10mi_state) +
tm_fill(col = "orange",

alpha = 0.5) +
tm_borders(col = "blue") +
map_VaccineSites

map_Rural_LowIncome_md

FIGURE 6.3. Rural low-income tracts and vaccination sites with a 10 mi buffer, clipped to the
Maryland state border.

We can narrow down the rural regions that may contain vaccination deserts by identifying rural low-
income areas that are outside the 10-mile range of a vaccination site. The function st_difference()

clips features that do not intersect with other features or are within other features. (Note that the
code may produce a warning that can be ignored). The resulting plot should be similar to Figure 6.4.
It shows rural areas (not census tracts) that would have limited access to vaccination sites in “hot
pink.” They are mainly located on the Eastern Shore (parts of Dorchester, Queen Anne’s, and Kent
County) and in Western Maryland (parts of Washington, Allegany, and Garrett County).

58 6 Spatial Analysis — Part 2

rural_vac_desert <- st_difference(rural_LowIncome, vac_10mi_state)

map_Rural_vac_desert <- map_MD_counties +
tm_shape(rural_vac_desert) +
tm_fill(col = "hotpink",

alpha = 0.75) +
tm_shape(vac_10mi_state) +
tm_fill(col = "orange",

alpha = 0.5) +
tm_borders(col = "blue") +
map_VaccineSites

map_Rural_vac_desert

FIGURE 6.4. The map shows rural areas with potential vaccination deserts (highlighted in "hot
pink").

6.2 Possible Vaccination Deserts in Garrett County

The analysis above suggests that Garrett County in Western Maryland may have rural vaccination
deserts, which warrants further analysis. Before we continue, we create a basemap for Garrett County
that allows us to map possible vaccination deserts in Garrett County. The code below extracts Garrett
County from MD_CensusTracts_6487 using the County variable. It unifies the census tracts and plots
a map. The plot should look similar to Figure 6.5 A.

6.2 Possible Vaccination Deserts in Garrett County 59

Garrett_CensusTracts <- subset(MD_CensusTracts_6487, County == "Garrett")

Garrett_CensusTracts

Garrett_County <- st_union(Garrett_CensusTracts)

map_Garrett <- tm_shape(Garrett_County) +
tm_fill(col = "antiquewhite") +
tm_borders(col = "black")

map_Garrett

Next, we extract and map rural low-income tracts, that are highlighted in red. For reference, all
census tracts are outlined (Figure 6.5 B).

Garrett_RuralLowIncome <- subset(Garrett_CensusTracts,
Urban == 0 & LowIncomeTracts == 1)

Garrett_RuralLowIncome

map_Garrett_RuralLowIncome <- map_Garrett +
tm_shape(Garrett_CensusTracts) +
tm_borders(col = "black") +
tm_shape(Garrett_RuralLowIncome) +
tm_fill(col = "orange") +
tm_borders(col = "black")

map_Garrett_RuralLowIncome

Five of the seven census tracts in Garrett County qualify as rural low-income tracts. Next, we identify
vaccination sites located in Garrett County. To identify areas with limited access to these sites we
create again a 10-mile buffer around the Garrett County vaccination sites, join overlapping buffers,
and clip the 10-mile buffers to the boundaries of Garrett County. For reference we label the tracts
with their names (listed in the variable NAME) (Figure 6.5 C).

Identify vaccination sites
vac_Garrett <- st_intersection(VaccineSites_6487, Garrett_County)

Create a 10 mile buffer around vaccination sites
vac_Garrett_10mi <- st_buffer(vac_Garrett, dist = 1.690344*1e04)

unify
vac_Garrett_10mi <- st_union(vac_Garrett_10mi)

Clip to Garrett County Boundaries
vac_Garrett_10mi_clipped <- st_intersection(Garrett_County, vac_Garrett_10mi)

60 6 Spatial Analysis — Part 2

map
Garrett County Vaccine Sites
map_vac_Garrett <- tm_shape(vac_Garrett) +

tm_symbols(shape = 25,
size = 0.75,
col = "green",
border.col = "red")

map_Garrett_RuralLowIncome_10mi <- map_Garrett_RuralLowIncome +
tm_shape(vac_Garrett_10mi_clipped) +
tm_fill(col = "purple",

alpha = 0.5) +
map_vac_Garrett

map_Garrett_RuralLowIncome_10mi

FIGURE 6.5. Maps of Garrett County. A. County boundaries. B. Rural low-income census tracts
(highlighted in orange). C. Rural low-income census tracts (highlighted in orange) and ranges of
vaccination sites (highlighted in purple). Location of vaccination sites are shown as green inverted
triangles.

Garrett County has five rural low-income tracts: tracts 1–4, and tract 7. Tracts 2–4 and 7 have large
areas that are within the range of a vaccination site. Tract 1 has only two small sections that are
within the range (Figure 6.5 C).

As discussed in Section 1.1, a low-income census tract should have at least 33% of its area outside of
the range of a vaccination site to be flagged as a possible vaccination desert. Remember however that
this definition has its limitations. It suggests that residential housing is evenly distributed throughout
the census tract. This is likely not true for many rural areas.

Regardless, let’s determine the relative sizes of the low-income census tracts sections that are outside
of the range of a vaccination site. To do so, we first identify the sections that are within the range
of a vaccination site, and determine their sizes. We use st_intersection() to extract the portions
of the census tracts that is within the range of a vaccination site. Note that the low-income census
tracts are listed first, followed by the 10-mile vaccination site buffer. Also, st_intersection() will

6.2 Possible Vaccination Deserts in Garrett County 61

issue a warning that can be ignored. The resulting spatial object is assigned to vac_assess. Next, we
calculate the area of the spatial features with st_area() (and assign the outcome to vac_access_area).
Then we calculate the total area of the low-income census tracts (st_area(Garrett_RuralIncome))
and assign the output to the object Garrett_RuralLowIncome_area.

Since all five low-income tracts of Garrett County overlap with the 10-mile range of a vaccination
site, we can calculate the relative area of a low-income tract that is outside the reach of a vaccination
site by dividing vac_access_area by Garrett_RuralLowIncome_area. The quotient (result of the
division) is converted into a vector (function as.vector()) and subtracted from one. The final ratio is
assigned to a new variable (outside_range_ratio) to the Garrett_RuralLowIncome_vac_area created
beforehand.

determine region within range
vac_access <- st_intersection(Garrett_RuralLowIncome, vac_Garrett_10mi)

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

vac_access_area <- st_area(vac_access)

vac_access_area

Units: [m^2]
[1] 21235139 190265302 267057684 137166602 177668272

calcualting total area of each census tract (low income)
Garrett_RuralLowIncome_area <- st_area(Garrett_RuralLowIncome)

Garrett_RuralLowIncome_area

Units: [m^2]
[1] 275216882 208291591 323333623 268461042 214505992

62 6 Spatial Analysis — Part 2

copy Garrett_RuralLowIncome
Garrett_RuralLowIncome_vac_area <- Garrett_RuralLowIncome

Calculate area outside of the range
Garrett_RuralLowIncome_vac_area$outside_range_ratio <-
1 - as.vector(vac_access_area/Garrett_RuralLowIncome_area)

Garrett_RuralLowIncome_vac_area

Simple feature collection with 5 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 185230.9 ymin: 173522.8 xmax: 234427.1 ymax: 230941.9
Projected CRS: NAD83(2011) / Maryland
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
530 24023000100 1400000US24023000100 24 023 000100 1 Tract 105.372
531 24023000200 1400000US24023000200 24 023 000200 2 Tract 80.293
532 24023000300 1400000US24023000300 24 023 000300 3 Tract 124.156
533 24023000400 1400000US24023000400 24 023 000400 4 Tract 102.178
536 24023000700 1400000US24023000700 24 023 000700 7 Tract 82.476
County Urban POP2010 LowIncomeTracts HUNVFlag
530 Garrett 0 4003 1 1
531 Garrett 0 3937 1 1
532 Garrett 0 2857 1 0
533 Garrett 0 3337 1 0
536 Garrett 0 5726 1 1
geometry outside_range_ratio
530 MULTIPOLYGON (((187332 2221... 0.92284216
531 MULTIPOLYGON (((202819.1 23... 0.08654353
532 MULTIPOLYGON (((222190.9 20... 0.17404914
533 MULTIPOLYGON (((205719.8 18... 0.48906329
536 MULTIPOLYGON (((197757.6 18... 0.17173283

We then extract low-income tracts with an outside_range_ratio larger than 33% (0.33), which
represent possible vaccination deserts.

subset for vaccination deserts
Garrett_RuralVacDeserts <- subset(Garrett_RuralLowIncome_vac_area,

outside_range_ratio > 0.33)

Garrett_RuralVacDeserts

Simple feature collection with 2 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY

6.3 Possible Vaccination Deserts in Garrett County 63

Bounding box: xmin: 186998.7 ymin: 183652.7 xmax: 222098.7 ymax: 230941.9
Projected CRS: NAD83(2011) / Maryland
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
530 24023000100 1400000US24023000100 24 023 000100 1 Tract 105.372
533 24023000400 1400000US24023000400 24 023 000400 4 Tract 102.178
County Urban POP2010 LowIncomeTracts HUNVFlag
530 Garrett 0 4003 1 1
533 Garrett 0 3337 1 0
geometry outside_range_ratio
530 MULTIPOLYGON (((187332 2221... 0.9228422
533 MULTIPOLYGON (((205719.8 18... 0.4890633

map
map_Garrett_RuralVacDeserts <- map_Garrett +

tm_shape(Garrett_CensusTracts) +
tm_borders(col = "black") +
tm_shape(Garrett_RuralLowIncome) +
tm_polygons(col = "orange") +
tm_shape(Garrett_RuralVacDeserts) +
tm_polygons(col = "red") +
map_vac_Garrett +
tm_add_legend(type = "symbol",

shape = c(22, 22, 25),
size = c(0.9, 0.9, 0.65),
col = c("orange", "red", "green"),
border.col = c("black", "black", "red"),
label = c("Rural Low-income Tract",

"Potential Vaccination Desert",
"COVID-19 Vaccination Site")) +

tm_legend(position = c(0.65, 0.02),
width = 0.6) +

tm_layout(legend.text.size = 0.85)

map_Garrett_RuralVacDeserts

#save map
tmap_save(map_Garrett_RuralVacDeserts,

filename = "figures/map_Garrett_RuralVacDeserts.png")

Note that you may need to adjust the position of the legend manually for the saved file. I adjusted
the legend position as follows to save the map to my liking (just replace the lines containing the
tm_legend(position . . .)).

tm_legend(position = c(0.65, 0.02),
width = 0.6) +

64 6 Spatial Analysis — Part 2

FIGURE 6.6. Map of Garrett County showing rural low-income census tracts (highlighted in red)
that are potential vaccination deserts.

6.3 Possible Vaccination Deserts in Baltimore City

We can use a similar approach to assess whether Baltimore City has “COVID-19 Vaccination Deserts.”
Of course, there are some modifications necessary.

• Remember, in an urban setting, we defined a limited-access census tract as a census tract where
more than 33% of the area is outside of a 0.5 mile range to a vaccination site (0.5 mile is
roughly 800 m). Thus, instead of creating a 10-mile buffer around vaccination sites, we create a
0.5 mile (800 m) buffer.

• Baltimore City is surrounded by other (Maryland) counties, in which Baltimore City residents
can get vaccinated. Therefore, vaccination sites will be clipped to Baltimore City limits that
are “expanded” by 800 m.

• As you will see, in contrast to Garrett County, Baltimore City has low-income tracts that are
outside of the 0.5 miles range of vaccination sites (Figure 6.7 C), which we have to account for.

6.3 Possible Vaccination Deserts in Baltimore City 65

The first steps (up to mapping low-income tracts and buffered vaccination sites) in general follow
the example we used for Garrett County:

1. We create a base map for Baltimore City and a map showing census tracts.

2. We extract low-income tracts and double check that we only have urban tracts.

3. We create a 800 m buffer around Baltimore City limits and identify vaccination sites that are
within the extended Baltimore City limits.

4. We create a 800 m buffer around the vaccination sites and clip the buffered sites to the city
limits (for aesthetics).

5. We plot Baltimore City’s census tracts, low-income census tracts, and buffered vaccination
sites.

Create Baltimore City map
From Census Tract Map
BC_CensusTracts <- subset(MD_CensusTracts_6487, County == "Baltimore City")

Baltimore City outline
BC <- st_union(BC_CensusTracts)

Map BC (Figure 6.7 A)

map_BC <- tm_shape(BC) +
tm_fill(col = "antiquewhite") +
tm_borders(col = "black")

map_BC

Extract low income census tracts.
check if non urban tracts are present.
subset(BC_CensusTracts, Urban == 0) # just to be sure

Simple feature collection with 0 features and 13 fields
Bounding box: xmin: NA ymin: NA xmax: NA ymax: NA
Projected CRS: NAD83(2011) / Maryland
[1] CensusTract GEO_ID STATE COUNTY
[5] TRACT NAME LSAD CENSUSAREA
[9] County Urban POP2010 LowIncomeTracts
[13] HUNVFlag geometry
<0 rows> (or 0-length row.names)

66 6 Spatial Analysis — Part 2

<0 rows>, we are good to go
Extract LowIncomeTracts
BC_LowIncome <- subset(BC_CensusTracts, LowIncomeTracts == "1")

Map census tracts, highlight low-income census tracts orange (Fig. 6.7 B)
map_BC_LowIncome <- map_BC +

tm_shape(BC_CensusTracts) +
tm_borders(col = "black") +
tm_shape(BC_LowIncome) +
tm_fill(col = "orange") +
tm_borders(col = "black")

map_BC_LowIncome

Create 800 m buffer for Baltimore City
BC_800m <- st_buffer(BC, dist = 800)

Identify Vaccination Sites in BC (for mapping sites); ignore warning
vac_BC <- st_intersection(VaccineSites_6487, BC)

Identify Vaccination Sites within "expanded" City; ignore warning
vac_BC_ext <- st_intersection(VaccineSites_6487, BC_800m)

Create 0.5 mi (800m) buffer
vac_BC_800m <- st_buffer(vac_BC_ext, dist = 800)

Unify
vac_BC_800m <- st_union(vac_BC_800m)

Clip to BC boundaries (NOT BC_800m)
vac_BC_800m_clipped <- st_intersection(BC, vac_BC_800m)

Map Vaccination Sites and buffer, only map sites in the city (Figure 6.7 C)
map_vac_BC <- tm_shape(vac_BC) +

tm_symbols(shape = 25,
size = 0.5,
col = "green",
border.col = "black")

map (figure 6.7 C)
map_BC_LowIncome_800m <- map_BC_LowIncome +

tm_shape(vac_BC_800m_clipped) +
tm_fill(col = "purple",

alpha = 0.5) +
map_vac_BC

map_BC_LowIncome_800m

6.3 Possible Vaccination Deserts in Baltimore City 67

The R script produces maps similar to the plots in Figure 6.7 A–C. Indeed, Baltimore City has quite a
few low-income tracts that are outside the 0.5 mile range of vaccination sites. These by definition are
possible vaccination deserts. We need to separate them from the low-income tracts that are within
the range of vaccination sites. Otherwise, we cannot calculate the area that overlap. The package
dplyr has the function anti_join() that removes rows of a data frame if the rows are present in
another data frame. However, the function does not work with 2 sf objects. The 2nd object needs to
be a non spatial data frame.

FIGURE 6.7. Maps of Baltimore City. A. Outline of Baltimore City. B. Low-income census tracts
(highlighted in orange). C. Low-income census tracts (highlighted in orange) and a range of
vaccination sites (highlighted in purple). Location of vaccination sites are shown as green inverted
triangles.

To separate the low-income tracts that share some area with the buffered vaccination sites, we use
the following approach.

1. We identify the area of the census tracts that overlap with the buffered vaccination site and
name these BC_vac_access. We are using the function st_intersection(). As the function
name implies, a spatial data frame is returned that only contains the intersection of both the
census tracts and the buffered vaccination sites (Figure 6.8 A).

2. We obtain the tracts that do not overlap (the “no-access” tracts) by removing the tracts with
access from the overall low-income tracts with the function dplyr::anti_join(). This possible
because in sf objects the function st_intersection() does not alter non spatial information.

3. We obtain the entire census tracts that overlap with the buffered vaccination sites. We assign
these tracts to the object BC_withvac_access.

The following R scripts produces a few plots that visualize the above process. The plots are shown in
Figure 6.8 A–C. st_intersection() will again give warnings that can be ignored.

68 6 Spatial Analysis — Part 2

#==
Step 1: identify the area that overlaps
#==

BC_vac_access <- st_intersection(BC_LowIncome, vac_BC_800m_clipped)

Map BC_vac_access (Fig. 6.8 A)
create an outline of Low Access census tracts
BC_LowIncome_outline <- st_union(BC_LowIncome)

base map
BC_LI <- tm_shape(BC_LowIncome_outline) +

tm_borders(col = "darkorange3",
lwd = 1.5) +

tm_shape(BC_LowIncome_outline) +
tm_fill(col = "antiquewhite") +
tm_borders(col = "darkorange3",

lwd = 1.5)

map_BC_vac_access <- BC_LI +
tm_shape(BC_vac_access) + # area of overlap
tm_fill(col = "purple",

alpha = 0.25) +
tm_borders(col = "darkblue")

map_BC_vac_access

#==
Step 2: identify census tracts that do not overlap
#==

Remove geometries from BC_vac_access
drop spatial information from overlap (BC_vac_access
BC_vac_access_nsp <- st_drop_geometry(BC_vac_access)

BC_novac_access <- dplyr::anti_join(BC_LowIncome, BC_vac_access_nsp, by = "NAME")

Map BC_novac_access (Fig. 6.8 B)
map_BC_novac_access <- BC_LI +

tm_shape(BC_novac_access) + # tracts w/ no access
tm_polygons(col = "red")

map_BC_novac_access

#===
Step 3 get census tracts with access (overlap)
#===

Remove geometries from BC_novac_access
BC_novac_access_nsp <- st_drop_geometry(BC_novac_access)

Remove no-access from low-income tract

6.3 Possible Vaccination Deserts in Baltimore City 69

BC_withvac_access <- dplyr::anti_join(BC_LowIncome, BC_novac_access_nsp, by = "NAME")

Map BC_withvac_access (Fig. 6.8 C)
map_BC_withvac_access <- BC_LI +

tm_shape(BC_withvac_access) +
tm_fill(col = "orange",

alpha = 0.5) +
tm_borders(col = "darkorange3")

map_BC_withvac_access

FIGURE 6.8. Outcome of spatial manipulations on low-income tracts of Baltimore City. A. Inter-
section of low-income tracts and buffered vaccination sites (highlighted in purple) generated by
st_intersection(). B. Low-income tracts outside of the 0.5 mi buffer around vaccination sites
(“no-access” low-income tracts; highlighted in red). C. Low-income census tracts that intersect with
the vaccination site buffer (“with-access” low-income tracts; highlighted in orange).

We have two sets of complete low-income census tracts: (1) census tracts that do not overlap
(“no-access” low-income tracts; Figure 6.8 B), and (2) those that have areas within the 0.5 mile
range to vaccination sites (“with-access” low-income tracts; Figure 6.8 C). These data sets allow
us to calculate the portion of the area of a low-income tract that overlaps with the 0.5 mile buffer
around vaccination sites. For these calculations it is important that the census tracts in both data
frames (BC_vac_access and BC_withvac_access) are in the same order. To verify, we use the function
identical(). It tests if two objects are exactly the same. We cannot compare the entire data frames
since the geometry columns of the data frames differ. Furthermore, anti_join() from the dplyr

package unfortunately does not preserve the row numbers. Instead we compare the entries in the
variable GEO_ID as it is unique to each tract.

check if NAME viable is the same in both data frames
identical(BC_vac_access$GEO_ID, BC_withvac_access$GEO_ID)

70 6 Spatial Analysis — Part 2

[1] TRUE

TRUE is returned, confirming that in both data sets the order of the census tracts is identical. We now
identify possible low-income tracts with limited-access to vaccination sites following the example of
Garrett County. We first divide the area of the intersection (BC_vac_access) by the total area of the
tract (BC_withvac_access), then subtract the quotient from 1, and lastly extract tracts that share no
more than 33% with the buffer around vaccination sites.

calculate area of the portions that are within the 0.5 mile range
BC_vac_access_area <- st_area(BC_vac_access)

BC_vac_access_area

Units: [m^2]
[1] 426051.567 595722.353 1204742.968 437131.380 1595.308 68083.216
[7] 420835.141 133338.221 225786.014 326691.483 15006.228 281497.037
[13] 247188.754 74697.281 38425.821 202105.805 291927.929 251092.218
[19] 282982.776 327353.482 53235.925 128529.689 534636.724 291398.885
[25] 354049.787 87394.618 787116.713 544379.226 91860.517 204809.073
[31] 308259.900 706061.179 356875.579 934568.962 408658.063 270852.756
[37] 382688.840 503295.282 1020097.808 24903.375 318708.773 26947.737
[43] 8289.565 507238.123 293322.753 314815.420 593204.994 316978.938
[49] 259617.680 438479.266 298329.823 783814.209 681257.558 97632.114
[55] 875160.584 143299.770 12652.807 70685.473 46630.607 276051.933
[61] 484918.575 283264.985 340923.971 177094.232 160975.836 248396.176
[67] 92184.117 271324.877 265150.352 386301.387 207259.904 240586.509
[73] 180069.772 1248149.304 92392.360 130851.261 481958.333 989663.497
[79] 3416.019 292827.299 74827.221 1723568.441 1051350.778 29350.392
[85] 1186969.701 541803.150 407432.500 90406.402 44231.254 662949.100
[91] 1248459.714 173237.048 671154.321 130106.429 606352.391 536479.279
[97] 10152.565 423422.520 648875.862 1576870.203 171886.689 730677.745
[103] 311145.862 84521.796 481436.695 801923.164 783199.034 575371.412
[109] 62320.814 94295.486 305834.031 42781.522 753480.037 940759.662
[115] 401882.661 46069.995 418841.769 294534.122 426904.915 758439.728
[121] 1306801.799 2602953.864 1175111.918 1363236.743 113529.070 854045.245
[127] 228777.089 408589.497 480149.958 924871.056

6.3 Possible Vaccination Deserts in Baltimore City 71

Calculate total area of each low-income census tracts that intersect with a buffer
BC_withvac_access_area <- st_area(BC_withvac_access)

BC_withvac_access_area

Units: [m^2]
[1] 427345.4 595722.4 1204743.0 437131.4 257719.1 186938.5
[7] 429559.1 314502.5 225786.0 326691.5 2299202.9 364736.1
[13] 863578.2 268338.1 440547.7 251437.0 350511.1 336465.9
[19] 298794.8 327485.2 659655.6 2031460.0 795632.8 350196.9
[25] 744957.2 446013.3 844748.8 685535.9 453673.4 304861.7
[31] 308259.9 706061.2 356875.6 991486.1 408658.1 270852.8
[37] 532064.0 503295.3 1040072.6 298538.9 362711.1 357715.6
[43] 2825307.7 904919.4 679703.3 718015.6 593205.0 395240.6
[49] 391087.0 1090207.3 1455134.1 1489384.5 1691295.7 775813.7
[55] 938545.1 382271.0 255419.0 398742.1 1050387.4 276051.9
[61] 487427.0 310599.0 340924.0 234698.9 290125.6 382635.7
[67] 277363.1 380917.3 265150.4 931568.8 238474.1 398644.6
[73] 683109.9 1809786.4 1199178.7 288614.6 1082656.5 1477763.3
[79] 2358753.8 330709.1 975141.6 2585246.1 1283257.1 816551.0
[85] 2325837.4 2578126.4 1306904.1 2240766.9 1637342.2 1457068.4
[91] 1632642.9 1025175.6 885456.9 612403.1 885014.5 1236183.8
[97] 1334571.4 1365204.3 4464233.6 3218863.2 17165266.5 762390.6
[103] 311481.4 310251.5 972807.3 1097472.2 2177944.3 696604.8
[109] 1269181.3 681341.4 1132474.6 1085186.7 845572.7 1735994.4
[115] 566402.8 516018.6 729234.7 924512.3 739565.7 804749.8
[121] 1418617.5 3493791.3 2414014.1 3224540.7 979278.6 1645592.4
[127] 553237.0 1819413.2 870269.1 924956.5

copy BC_withvac_access
BC_withvac_access_vac_area <- BC_withvac_access

calcuate area outside of the range
BC_withvac_access_vac_area$outside_range_ratio <-

1 - as.vector(BC_vac_access_area/BC_withvac_access_area)

BC_withvac_access_vac_area

Simple feature collection with 130 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 424860.5 ymin: 172357 xmax: 440631.8 ymax: 189404.6
Projected CRS: NAD83(2011) / Maryland
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
1 24510030100 1400000US24510030100 24 510 030100 301 Tract 0.165

72 6 Spatial Analysis — Part 2

2 24510030200 1400000US24510030200 24 510 030200 302 Tract 0.195
3 24510040100 1400000US24510040100 24 510 040100 401 Tract 0.463
4 24510040200 1400000US24510040200 24 510 040200 402 Tract 0.169
5 24510060200 1400000US24510060200 24 510 060200 602 Tract 0.100
6 24510060300 1400000US24510060300 24 510 060300 603 Tract 0.072
7 24510060400 1400000US24510060400 24 510 060400 604 Tract 0.166
8 24510070200 1400000US24510070200 24 510 070200 702 Tract 0.120
9 24510070300 1400000US24510070300 24 510 070300 703 Tract 0.088
10 24510070400 1400000US24510070400 24 510 070400 704 Tract 0.126
County Urban POP2010 LowIncomeTracts HUNVFlag
1 Baltimore City 1 3065 1 1
2 Baltimore City 1 2342 1 0
3 Baltimore City 1 4006 1 0
4 Baltimore City 1 838 1 0
5 Baltimore City 1 3265 1 0
6 Baltimore City 1 1800 1 0
7 Baltimore City 1 1183 1 1
8 Baltimore City 1 3782 1 0
9 Baltimore City 1 1042 1 0
10 Baltimore City 1 1241 1 0
geometry outside_range_ratio
1 MULTIPOLYGON (((434910.7 17... 0.003027589
2 MULTIPOLYGON (((433985.8 18... 0.000000000
3 MULTIPOLYGON (((433926.2 18... 0.000000000
4 MULTIPOLYGON (((432439.3 18... 0.000000000
5 MULTIPOLYGON (((436345.8 18... 0.993809897
6 MULTIPOLYGON (((435592.6 18... 0.635798801
7 MULTIPOLYGON (((435161.1 18... 0.020309062
8 MULTIPOLYGON (((436406 1810... 0.576034505
9 MULTIPOLYGON (((435524.7 18... 0.000000000
10 MULTIPOLYGON (((435290.8 18... 0.000000000

subset for limited access
BC_limvac_access <- subset(BC_withvac_access_vac_area, outside_range_ratio > 0.33)

BC_limvac_access

Simple feature collection with 75 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 424876.1 ymin: 172357 xmax: 440631.8 ymax: 189404.6
Projected CRS: NAD83(2011) / Maryland
First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
5 24510060200 1400000US24510060200 24 510 060200 602 Tract 0.100
6 24510060300 1400000US24510060300 24 510 060300 603 Tract 0.072
8 24510070200 1400000US24510070200 24 510 070200 702 Tract 0.120
11 24510080101 1400000US24510080101 24 510 080101 801.01 Tract 0.894

6.3 Possible Vaccination Deserts in Baltimore City 73

13 24510080200 1400000US24510080200 24 510 080200 802 Tract 0.332
14 24510080301 1400000US24510080301 24 510 080301 803.01 Tract 0.104
15 24510080302 1400000US24510080302 24 510 080302 803.02 Tract 0.170
21 24510090100 1400000US24510090100 24 510 090100 901 Tract 0.254
22 24510090200 1400000US24510090200 24 510 090200 902 Tract 0.671
25 24510090500 1400000US24510090500 24 510 090500 905 Tract 0.286
County Urban POP2010 LowIncomeTracts HUNVFlag
5 Baltimore City 1 3265 1 0
6 Baltimore City 1 1800 1 0
8 Baltimore City 1 3782 1 0
11 Baltimore City 1 3881 1 1
13 Baltimore City 1 1585 1 0
14 Baltimore City 1 2084 1 0
15 Baltimore City 1 2937 1 1
21 Baltimore City 1 4251 1 1
22 Baltimore City 1 3243 1 0
25 Baltimore City 1 1964 1 1
geometry outside_range_ratio
5 MULTIPOLYGON (((436345.8 18... 0.9938099
6 MULTIPOLYGON (((435592.6 18... 0.6357988
8 MULTIPOLYGON (((436406 1810... 0.5760345
11 MULTIPOLYGON (((435823.6 18... 0.9934733
13 MULTIPOLYGON (((435460.7 18... 0.7137622
14 MULTIPOLYGON (((436130 1816... 0.7216300
15 MULTIPOLYGON (((436252.3 18... 0.9127772
21 MULTIPOLYGON (((433659.8 18... 0.9192974
22 MULTIPOLYGON (((435030.3 18... 0.9367304
25 MULTIPOLYGON (((434050.3 18... 0.5247381

BC_limvac_access contains all the low-income census tracts with limited access to a vaccination site
which as such qualify as vaccination deserts (based on our definition in Section 1.1). To obtain a list
or data frame with all possible vaccination deserts we have to add the “no-access” low-income tracts.
We can do so with the function rbind(), but we need to add an outside_range_ratio variable to the
BC_novav_access data frame. Since the all census tracts in this data frame are outside the range, all
entries are set to one.

combine no access with limited acces
BC_novac_access$outside_range_ratio <- 1

BC_VacDeserts <- rbind(BC_novac_access, BC_limvac_access)

BC_VacDeserts

Simple feature collection with 106 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 424876.1 ymin: 169994.5 xmax: 440631.8 ymax: 189417.3
Projected CRS: NAD83(2011) / Maryland

74 6 Spatial Analysis — Part 2

First 10 features:
CensusTract GEO_ID STATE COUNTY TRACT NAME LSAD
1 24510060100 1400000US24510060100 24 510 060100 601 Tract
2 24510070100 1400000US24510070100 24 510 070100 701 Tract
3 24510090600 1400000US24510090600 24 510 090600 906 Tract
4 24510150100 1400000US24510150100 24 510 150100 1501 Tract
5 24510150200 1400000US24510150200 24 510 150200 1502 Tract
6 24510150300 1400000US24510150300 24 510 150300 1503 Tract
7 24510150400 1400000US24510150400 24 510 150400 1504 Tract
8 24510150500 1400000US24510150500 24 510 150500 1505 Tract
9 24510150600 1400000US24510150600 24 510 150600 1506 Tract
10 24510150701 1400000US24510150701 24 510 150701 1507.01 Tract
CENSUSAREA County Urban POP2010 LowIncomeTracts HUNVFlag
1 0.092 Baltimore City 1 3222 1 0
2 0.112 Baltimore City 1 2957 1 0
3 0.154 Baltimore City 1 3402 1 1
4 0.143 Baltimore City 1 3211 1 0
5 0.162 Baltimore City 1 2699 1 0
6 0.154 Baltimore City 1 2478 1 1
7 0.315 Baltimore City 1 3724 1 0
8 0.367 Baltimore City 1 1543 1 0
9 0.370 Baltimore City 1 3412 1 1
10 0.331 Baltimore City 1 1696 1 1
outside_range_ratio geometry
1 1 MULTIPOLYGON (((436868.1 18...
2 1 MULTIPOLYGON (((436868.1 18...
3 1 MULTIPOLYGON (((435043.8 18...
4 1 MULTIPOLYGON (((431016 1817...
5 1 MULTIPOLYGON (((430202.4 18...
6 1 MULTIPOLYGON (((429669 1824...
7 1 MULTIPOLYGON (((429829.8 18...
8 1 MULTIPOLYGON (((428945.2 18...
9 1 MULTIPOLYGON (((428244.4 18...
10 1 MULTIPOLYGON (((428077.1 18...

Last, we map the potential vaccination deserts of Baltimore City. To make the map more appealing,
we will clip the census tract map to the Baltimore City physical boundaries map.

BC_county_boundary <- subset(MD_counties_6487, COUNTY == "Baltimore City")

BC_county_boundary <- st_union(st_buffer(BC_county_boundary, dist = 20))

BC_CensusTracts_phys <- st_intersection(BC_CensusTracts, BC_county_boundary)

BC_LowIncome_phys <- st_intersection(BC_LowIncome, BC_county_boundary)

BC_VacDeserts_phys <- st_intersection(BC_VacDeserts, BC_county_boundary)

map_BC_phys <- tm_shape(BC) +
tm_fill(col = "lightcyan3") +

6.3 Possible Vaccination Deserts in Baltimore City 75

tm_borders() +
tm_shape(BC_CensusTracts_phys) +
tm_fill(col = "antiquewhite") +
tm_shape(BC_LowIncome_phys) +
tm_fill(col = "orange") +
tm_shape(BC_VacDeserts_phys) +
tm_fill(col = "red") +
tm_shape(BC_CensusTracts_phys) +
tm_borders() +
tm_shape(BC) +
tm_borders(col = "black",

lwd = 1.5) +
map_vac_BC +

#Legend
tm_add_legend(type = "symbol",

labels =c('Vaccination Site',
'Low-income Tract',
'Low-income Tract flagged',
'as Vaccination Desert'),

size = c(0.5, 0.65, 0.65, 0),
shape = c(25, 22, 22, 20),
col = c('green', 'orange', 'red', 'white'),
title = 'Legend') +

tm_layout(fontfamily = 'Times',
legend.position = c(0.025, 0.195),
legend.text.size = 0.75,
legend.width = 1) +

tm_scale_bar(position = c("0.015", "0.0015"),
text.size = 0.5) + #add (default) scale

tm_compass(type = "8star", size = 2.5,
position = c("0.1125", 0.07)) #add compass

map_BC_phys

76 6 Spatial Analysis — Part 2

FIGURE 6.9. Map of Baltimore City showing low-income census tracts (highlighted in orange) and
possible vaccination deserts (highlighted in red).

Bibliography

Allaire, J., et al. (2020) rmarkdown: Dynamic Documents for R. R package version 2.6 https:

//github.com/rstudio/rmarkdown

IOGP Geomatics Committee (2021) EPSG Geodetic Parameter Dataset. https://epsg.org/home.
html (accessed on Apr 5, 2021)

Lovelace, R., Nowosad, J., and Jannes, M. (2021) Geocomputation with R. https://geocompr.rob
inlovelace.net/index.html (version: 2021-04-06)

MapTiler Team (2019) epsg.io, Coordinate Systems Worldwide. https://epsg.io (accessed on Apr
5, 2021)

National Geodetic Survey (2018) North American Datum of 1983. https://www.ngs.noaa.gov/dat
ums/horizontal/north-american-datum-1983.shtml (accessed on Mar 9, 2021)

Neuwirth, E. (2014) RColorBrewer: ColorBrewer Palettes. R package version 1.1-2 https://CRAN

.R-project.org/package=RColorBrewer

Pebesma, E. (2018) Simple Features for R: Standardized Support for Spatial Vector Data. The R
Journal 10:439–446. doi:10.32614/RJ-2018-009

Pebesma, E. and Bivand, R. (2021) Spatial data science with applications in R. https://keen-

swartz-3146c4.netlify.app/index.html (version: 2021-04-04)

R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing Vienna, Austria. https://www.R-project.org/

Reger, J.P. (2013) Maryland Geological Survey: a user’s guide to Maryland coordinate system.
http://www.mgs.md.gov/geology/maryland_coordinate_system.html (accessed on Apr 6, 2021)

Schauberger, P. and Walker, A. (2020) openxlsx: Read, Write and Edit xlsx Files. R package version
4.2.3 https://CRAN.R-project.org/package=openxlsx

Tennekes, M. (2018) tmap: Thematic maps in R. Journal of Statistical Software 84:1–39. doi:
10.18637/jss.v084.i06

United Nations General Assembly (2015) Resolution 70/1. Transforming our world: the 2030
Agenda for Sustainable Development. Tech. rep. https://www.un.org/en/development/desa/pop
ulation/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf

U.S. Census Bureau (2019) Glossary. https://www.census.gov/programs-surveys/geography/ab
out/glossary.html (accessed on Apr 5, 2021)

77

https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown
https://epsg.org/home.html
https://epsg.org/home.html
https://geocompr.robinlovelace.net/index.html
https://geocompr.robinlovelace.net/index.html
https://epsg.io
https://www.ngs.noaa.gov/datums/horizontal/north-american-datum-1983.shtml
https://www.ngs.noaa.gov/datums/horizontal/north-american-datum-1983.shtml
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
https://keen-swartz-3146c4.netlify.app/index.html
https://keen-swartz-3146c4.netlify.app/index.html
https://www.R-project.org/
http://www.mgs.md.gov/geology/maryland_coordinate_system.html
https://CRAN.R-project.org/package=openxlsx
https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.census.gov/programs-surveys/geography/about/glossary.html

78 Bibliography

U.S. Department of Agriculture (2009) Access to affordable and nutritious food: measuring and
understanding food deserts and their consequences. Tech. rep. https://www.ers.usda.gov/web
docs/publications/42711/12716_ap036_1_.pdf?v=8903.9

Ver Ploeg, M., Nulph, D., and Williams, R. (2011) Mapping food deserts in the United States.
https://www.ers.usda.gov/amber-waves/2011/december/data-feature-mapping-food-

deserts-in-the-us/ (accessed on Apr 5, 2021)

Wickham, H., François, R., Henry, L., and Müller, K. (2020) dplyr: A Grammar of Data Manipulation.
R package version 1.0.0 https://CRAN.R-project.org/package=dplyr

Wickham, H. and Henry, L. (2020) tidyr: Tidy Messy Data. R package version 1.1.0 https://CRAN.R-

project.org/package=tidyr

Xie, Y., Allaire, J., and Grolemund, G. (2018) R Markdown: The Definitive Guide. Chapman and
Hall/CRC, Boca Raton, Florida. https://bookdown.org/yihui/rmarkdown iSBN 9781138359338

Xie, Y., Dervieux, C., and Riederer, E. (2020) R Markdown Cookbook. Chapman and Hall/CRC,
Boca Raton, Florida. https://bookdown.org/yihui/rmarkdown-cookbook iSBN 9780367563837

https://www.ers.usda.gov/webdocs/publications/42711/12716_ap036_1_.pdf?v=8903.9
https://www.ers.usda.gov/webdocs/publications/42711/12716_ap036_1_.pdf?v=8903.9
https://www.ers.usda.gov/amber-waves/2011/december/data-feature-mapping-food-deserts-in-the-us/
https://www.ers.usda.gov/amber-waves/2011/december/data-feature-mapping-food-deserts-in-the-us/
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook

Appendices

Appendix A: Terms of Use

By downloading the data from the cloud storage service you agree to and accept the terms of service
of MEGA LIMITED (https://mega.nz/terms).

Use constraints: Code and Spatial Data, and the information therein, (collectively the “Data”) is
provided “as is” without warranty of any kind, either expressed, implied, or statutory. You (the user)
assume the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted,
nor is any responsibility for reliance thereon assumed. In no event shall the author be liable for
direct, indirect, incidental, consequential or special damages of any kind. The author does not accept
liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result
to changes to the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance
thereon assumed. In no event shall the author be liable for direct, indirect, incidental, consequential
or special damages of any kind, nor is there responsibility assumed to maintain the Data in any
manner or form. Data can be freely distributed as long as the conditions and user constraints of the
original data sources are observed. It is the responsibility of you (the user) to ensure compliance.
Data sources and links to data sources are listed in Appendix B: Data Sources.

79

https://mega.nz/terms

80 Appendices

Appendix B: Data Sources
Food Access Research Atlas Data (2015 Dataset)

File: FoodAccess2015.xlsx
Source: https://www.ers.usda.gov/data-products/food-access-research-

atlas/download-the-data/

Maryland Census Tracts (2010)

Files: • gz_2010_24_140_00_500k.dbf

• gz_2010_24_140_00_500k.prj

• gz_2010_24_140_00_500k.shp

• gz_2010_24_140_00_500k.shx

• gz_2010_24_140_00_500k.xml

Source: https://www.census.gov/geographies/mapping-files/time-

series/geo/carto-boundary-file.2010.html

URL (Block Groups:
Maryland MD):

https:

//www2.census.gov/geo/tiger/GENZ2010/gz_2010_24_140_00_500k.zip

List of COVID-19 Vaccination Sites

File: MD_Covid19_VacSites_2021-04-04.csv

The dataset was slightly modified for educational purposes. An additional variable (column) —
Location — was added and variables rearranged.

Original dataset

Source: https://coronavirus.maryland.gov/datasets/all-maryland-vaccination-

sites-1

Credit: Maryland Department of Health COVID-19 Testing Task Force
Metadata: https://www.arcgis.com/sharing/rest/content/items/d677f143334648a1a4

0b84d94df8e134/info/metadata/metadata.xml?format=default&output=html

https://www.ers.usda.gov/data-products/food-access-research-atlas/download-the-data/
https://www.ers.usda.gov/data-products/food-access-research-atlas/download-the-data/
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2010.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2010.html
https://www2.census.gov/geo/tiger/GENZ2010/gz_2010_24_140_00_500k.zip
https://www2.census.gov/geo/tiger/GENZ2010/gz_2010_24_140_00_500k.zip
https://coronavirus.maryland.gov/datasets/all-maryland-vaccination-sites-1
https://coronavirus.maryland.gov/datasets/all-maryland-vaccination-sites-1
https://www.arcgis.com/sharing/rest/content/items/d677f143334648a1a40b84d94df8e134/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/d677f143334648a1a40b84d94df8e134/info/metadata/metadata.xml?format=default&output=html

Appendices 81

Maryland Physical Boundaries — County Boundaries (Detailed)

Files: • Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).cpg

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).dbf

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).prj

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).shp

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).shx

• Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).xml

Source: https://data.imap.maryland.gov/datasets/maryland-physical-

boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-

73.569%2C39.559

Credit: MD iMAP, SHA
Metadata: https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4ec594

20e3d342dbcfe2/info/metadata/metadata.xml?format=default&output=html

Maryland County Boundaries

Files: • r(fsize(ftype('MD_counties_CT.dbf'))

• r(fsize(ftype('MD_counties_CT.prj'))

• r(fsize(ftype('MD_counties_CT.shp'))

• r(fsize(ftype('MD_counties_CT.shx'))

Source: Based on Census Tracts (2010) polygons (see above). The file was created by
unifying the census tracts of each county.

https://data.imap.maryland.gov/datasets/maryland-physical-boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-73.569%2C39.559
https://data.imap.maryland.gov/datasets/maryland-physical-boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-73.569%2C39.559
https://data.imap.maryland.gov/datasets/maryland-physical-boundaries-county-boundaries-detailed?geometry=-80.968%2C38.061%2C-73.569%2C39.559
https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4ec59420e3d342dbcfe2/info/metadata/metadata.xml?format=default&output=html
https://www.arcgis.com/sharing/rest/content/items/2315ef0b071a4ec59420e3d342dbcfe2/info/metadata/metadata.xml?format=default&output=html

	Attributions
	Cover
	List of Figures
	List of Figures
	Preface
	Preface
	Service Deserts
	Definition of a Service Desert

	Coordinate Reference Systems
	Geographic and Projected
	Formats of Definitions
	Common

	Data
	Data
	Data Sources and Description

	Data Import and Wrangling
	Import Data into
	Data Manipulation (Wrangling)

	Spatial Analysis — Part 1
	Creation and Manipulation of Spatial Data
	First Maps
	Manipulating Geometries

	Spatial Analysis — Part 2
	Identification of Possible Rural Vaccination Deserts
	Possible Vaccination Deserts in Garrett County
	Possible Vaccination Deserts in Baltimore City

	Bibliography
	Appendices
	Appendix A: Terms of Use
	Appendix B: Data Sources

