
Chapter 4
Data Import and Wrangling

This section shows how to import data, and perform some “data wrangling.” Data wrangling refers
to steps taken to make data more useful to downstream applications. Here we show approaches to
clean up the raw data, i.e., remove missing values, filter out unnecessary information, and merge
data sets. Data visualization and transformation of non-spatial data to spatial simple feature objects
is introduced in the next section.

It is assumed that you already downloaded and unpacked the data into the data folder in your R

project folder. If not, please do so before continuing (see Section 3.1).

4.1 Import Data into R

Food Access Research Atlas Data (2015 Data Set)

As mentioned in Section 3.2, the data is compiled into an Excel workbook. Excel workbooks
(.xlsx format) can be imported directly into R by several packages, including xlsx, XLconnect,
read_xlsx, and openxlsx. In this section we are using the package openxlsx. In contrast to the
xlsx and XLConnect packages, openxlsx does not depend on Java. For detailed information on the
openxlsx package please consult the documentation available:

• https://www.rdocumentation.org/packages/openxlsx/versions/4.2.3

• https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf

The openxlsx package provides functions to work with Excel worksheets, including functions to
extract the of names of worksheets as well as to import selected worksheets.

Explore the structure of the workbook

The function openxlsx::getSheetNames() extracts the names of Excel worksheets.

openxlsx::getSheetNames("data/FoodAccess2015.xlsx")

[1] "Read Me" "Variable Lookup"
[3] "Food Access Research Atlas"

15

16 4 Data Import and Wrangling

The output shows that the workbook has 3 worksheets:

1. Read Me

2. Variable Lookup

3. Food Access Research Atlas

Import relevant sheets

The worksheet Food Access Research Atlas contains the data we are interested in. The fol-
lowing code imports this worksheet as a data frame and assigns the data frame to the object
FoodAccess2015. Note, this is a large file. Reading it into R will take a while. Be patient.

FoodAccess2015 <- openxlsx::read.xlsx("data/FoodAccess2015.xlsx",
sheet = "Food Access Research Atlas")

Alternatively, the index number of the worksheet can be used:

FoodAccess2015 <- openxlsx::read.xlsx("data/FoodAccess2015.xlsx",
sheet = 3)

Next, the structure of the data frame is explored with str(). The output of the following code lists
the first 20 variables (set by the argument list.len = 20). If all variables should be displayed, the
argument would be list.len = ncol().

str(FoodAccess2015, list.len = 20, strict.width = "cut")

'data.frame': 72864 obs. of 147 variables:
$ CensusTract : chr "01001020100" "01001020200" "01001020300" "0100"..
$ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
$ County : chr "Autauga" "Autauga" "Autauga" "Autauga" ...
$ Urban : num 1 1 1 1 1 1 1 0 0 0 ...
$ POP2010 : num 1912 2170 3373 4386 10766 ...
$ OHU2010 : num 693 743 1256 1722 4082 ...
$ GroupQuartersFlag : num 0 0 0 0 0 0 0 0 0 0 ...
$ NUMGQTRS : num 0 181 0 0 181 0 36 0 0 14 ...
$ PCTGQTRS : num 0 0.0834 0 0 0.0168 ...
$ LILATracts_1And10 : num 0 0 0 0 0 0 1 0 0 0 ...
$ LILATracts_halfAnd10: num 0 0 0 0 0 0 1 0 0 0 ...
$ LILATracts_1And20 : num 0 0 0 0 0 0 1 0 0 0 ...
$ LILATracts_Vehicle : num 0 0 0 0 0 0 1 0 0 0 ...
$ HUNVFlag : num 0 0 0 0 1 0 1 1 0 0 ...
$ LowIncomeTracts : num 0 0 0 0 0 0 1 0 0 0 ...
$ PovertyRate : num 10 18.2 19.1 3.3 8.5 ...

4.1 Import Data into R 17

$ MedianFamilyIncome : num 74750 51875 52905 68079 77819 ...
$ LA1and10 : num 1 0 1 1 1 1 1 0 0 1 ...
$ LAhalfand10 : num 1 1 1 1 1 1 1 0 0 1 ...
$ LA1and20 : num 1 0 1 1 1 1 1 0 0 0 ...
[list output truncated]

The data frame has 72,864 observations (rows) and 147 variables (columns). Note that the variable
CensusTract is a character string (chr). Furthermore, variables such as Urban or POP2010 were
imported as real numbers (double precision numbers, num).

Census Tracts Polygons

The census tracts polygons are stored in a so called “shapefile collection” with the filename prefix
gz_2010_24_140_00_500k. A shapefile collection consists of a number of different file types with the
same filename prefix. These files contain geometric location and features as well attributes to these
features. The files need to be stored in the same directory. This filing format was developed and is
maintained by the Environmental Systems Research Institute (ESRI) (ESRI, 2020).

Four of these file types are required when performing spatial analysis:

• .shp, the shapefile itself, contains the features’ geometry,
• .shx, contains the index of the feature geometry,
• .dbf, a table in dBASE that contains the attributes of the features, and
• .prj, a text file that contains the coordinate reference system information (CRS) of the features.

The function st_read() from the package sf imports shapefiles into R. While only the shapefile
proper (.shp) is called, the function needs the other 3 files to properly import the geometric features
and their attributes.

MD_CensusTracts_2010 <- sf::st_read("data/gz_2010_24_140_00_500k.shp")

MD_CensusTracts_2010

Simple feature collection with 1403 features and 7 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -79.48765 ymin: 37.91172 xmax: -75.04894 ymax: 39.72304
Geodetic CRS: NAD83
First 10 features:
GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
1 1400000US24015031400 24 015 031400 314 Tract 16.039
2 1400000US24017850101 24 017 850101 8501.01 Tract 9.718
3 1400000US24017850706 24 017 850706 8507.06 Tract 2.698
4 1400000US24017850710 24 017 850710 8507.10 Tract 1.401
5 1400000US24017850901 24 017 850901 8509.01 Tract 2.082
6 1400000US24017851500 24 017 851500 8515 Tract 5.010

18 4 Data Import and Wrangling

7 1400000US24017990000 24 017 990000 9900 Tract 0.000
8 1400000US24019970702 24 019 970702 9707.02 Tract 43.137
9 1400000US24019970804 24 019 970804 9708.04 Tract 87.808
10 1400000US24019970900 24 019 970900 9709 Tract 211.650
geometry
1 MULTIPOLYGON (((-76.15435 3...
2 MULTIPOLYGON (((-77.09875 3...
3 MULTIPOLYGON (((-76.94249 3...
4 MULTIPOLYGON (((-76.96267 3...
5 MULTIPOLYGON (((-76.90672 3...
6 MULTIPOLYGON (((-76.96267 3...
7 MULTIPOLYGON (((-77.08633 3...
8 MULTIPOLYGON (((-76.25027 3...
9 MULTIPOLYGON (((-76.16439 3...
10 MULTIPOLYGON (((-76.04837 3...

The first line of the code reads in the data. You may get a warning similar to the following:

Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
when loading 'dplyr'

The warning can be ignored. It basically tells you that if the package dplyr would be loaded,
“traditional” data frames may be replaced by tibble data frames. This will not affect our analysis.

The second line of code (MD_CensusTracts_2010) prints out the first 10 entries of the read in shapefile.
It tells us that MD_CensusTracts_2010 is a “simple feature” object (sf) with 1,403 and 7 fields (plus
a geometry column). The geometric features are multi polygons. The coordinate reference system
(CRS) is NAD83. NAD83 stands for the North American Datum of 1983. The NAD83(2011) is the current
geodetic system that is used for the continental U.S. (Section 2.3) (National Geodetic Survey, 2018).

Maryland Counties (Physical) Boundaries

The Maryland_Physical_Boundaries_-County_Boundaries(Detailed) shapefile collection contains
polygons of the Maryland counties (physical) boundaries that take into consideration waterways
(such as the tributaries of Chesapeake Bay).

Import the file with st_read().

4.1 Import Data into R 19

MD_counties_map <-
sf::st_read("data/Maryland_Physical_Boundaries_-_County_Boundaries_(Detailed).shp")

MD_counties_map

Simple feature collection with 24 features and 7 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -8848486 ymin: 4564403 xmax: -8354439 ymax: 4825752
Projected CRS: WGS 84 / Pseudo-Mercator
First 10 features:
OBJECTID COUNTY DISTRICT COUNTY_FIP COUNTYNUM CREATION_D LAST_UPDAT
1 1 Allegany 6 1 1 2010-01-28 2010-01-28
2 2 Anne Arundel 5 3 2 2006-04-18 2006-04-18
3 3 Baltimore 4 5 3 2006-10-09 2006-10-09
4 4 Baltimore City 0 510 24 2006-04-18 2009-11-16
5 5 Calvert 5 9 4 2010-01-28 2010-01-28
6 6 Caroline 2 11 5 2007-05-21 2008-07-30
7 7 Carroll 7 13 6 2008-06-16 2012-01-17
8 8 Cecil 2 15 7 2006-04-18 2008-08-20
9 9 Charles 5 17 8 2009-06-08 2009-06-08
10 10 Dorchester 1 19 9 2007-02-08 2007-02-22
geometry
1 MULTIPOLYGON (((-8721085 48...
2 MULTIPOLYGON (((-8527741 47...
3 MULTIPOLYGON (((-8523507 48...
4 MULTIPOLYGON (((-8519244 47...
5 MULTIPOLYGON (((-8531762 46...
6 MULTIPOLYGON (((-8432189 47...
7 MULTIPOLYGON (((-8556981 47...
8 MULTIPOLYGON (((-8441053 48...
9 MULTIPOLYGON (((-8580309 46...
10 MULTIPOLYGON (((-8439760 46...

This dataset uses a projected CRS that is based on WGS 84 using a pseudo-mercator projection.
Pseudo-mercator projections are used by many web based mapping apps.

List of Vaccination Sites

MD_Covid19_VacSites_2021-04-04.csv is a comma separated file that lists COVID-19 vaccination
sites in Maryland. The table is read into R with read.table() and assigned to the object VaccineSites.
Its structure is explored with str().

20 4 Data Import and Wrangling

VaccineSites <- read.table(file = "data/MD_Covid19_VacSites_2021-04-04.csv",
sep = ",",
na.strings = c(""," ", "NA"),
header = TRUE,
quote = "\"",
fill = TRUE)

str(VaccineSites, list.len = 20, strict.width = "cut")

'data.frame': 556 obs. of 48 variables:
$ OBJECTID : int 84 87 92 93 95 96 98 99 100 102 ...
$ facilityid : chr "Anna_Lumi_83" "Lanh_Lumi_86" "Balt_Grac_91"..
$ name : chr "Luminis Health Anne Arundel Medical Center"..
$ fulladdr : chr "2001 Medical Parkway, Annapolis, MD 21401""..
$ Location : chr "(38.990512076102, -76.5341664410021)" "(38"..
$ X : num -76.5 -76.9 -76.6 -77 -76.9 ...
$ Y : num 39 39 39.3 39.6 39.2 ...
$ municipality : chr "Annapolis" "Lanham" "Baltimore" "Westminst"..
$ CreationDate : chr "1970/01/01 00:00:00+00" "1970/01/01 00:00:"..
$ Creator : logi NA NA NA NA NA NA ...
$ EditDate : chr "1970/01/01 00:00:00+00" "1970/01/01 00:00:"..
$ Editor : chr NA NA NA NA ...
$ ActiveYesNo : chr "Yes" "Yes" "Yes" "Yes" ...
$ site_type : chr "Hospital" "Hospital" "Hospital" "Hospital" ..
$ appt_required : logi NA NA NA NA NA NA ...
$ operationalhours : chr "Mon - Fri 7 am - 7 pm" "Mon - Fri 7am - 7 "..
$ docorder_required : logi NA NA NA NA NA NA ...
$ costfree : logi NA NA NA NA NA NA ...
$ cost_outpocket : logi NA NA NA NA NA NA ...
$ drivethru : logi NA NA NA NA NA NA ...
[list output truncated]

This data frame contains 556 observations and 48 variables. The data frame as a variable called
Location that has GPS coordinates presented as (longitude, latitude). The data frame also has
xy coordinates (variables X and Y). However for the purpose of practice, we will not use them.

4.2 Data Manipulation (Wrangling)

Once the data are imported, in most cases the data needs to be manipulated to continue with the
analysis.

Our aim is to map “vaccination deserts” in Maryland and in Baltimore City. We have 3 datasets,
namely 2 (non spatial) data frames, FoodAccess2015 and VaccineSites, and a spatial object,
MD_CensusTracts. The two data frames contain geographic and demographic information (loca-

4.2 Data Manipulation (Wrangling) 21

tion of vaccination sites in Maryland, demographic profiles of the census tracts within the U.S.), and
the spatial (simple feature) object the geographic boundaries of census tracts in Maryland.

We need to:

1. Extract the data for Maryland and Baltimore City, where possible,

2. Combine demographic profiles and geographic boundaries, and

3. Convert the data frame with location information on vaccination sites into a spatial (simple
feature) object.

This section describes how to extract data from a data frame (spatial and non-spatial) as well as
merging data frames. Conversion of data frames into spatial objects, manipulation of spatial objects,
and mapping is discussed in the next section.

Subsetting (Filtering) Data Frames

We are interested in data within Maryland and Baltimore City. To extract the data we use the function
subset() (part of the core R installation).

Food Access Data

The data frame contains data for the entire US. List the first five variables with str().

str(FoodAccess2015, list.len = 5, strict.width = "cut")

'data.frame': 72864 obs. of 147 variables:
$ CensusTract : chr "01001020100" "01001020200" "01001020300" "0100"..
$ State : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
$ County : chr "Autauga" "Autauga" "Autauga" "Autauga" ...
$ Urban : num 1 1 1 1 1 1 1 0 0 0 ...
$ POP2010 : num 1912 2170 3373 4386 10766 ...
[list output truncated]

The output shows that the data frame contains the variable State and County. The following
code extracts only the rows for the state of Maryland, assigns the new data frame to the object
FoodAccess2015_MD, and shows the structure of the first 20 variables of the new object.

FoodAccess2015_MD <- subset(FoodAccess2015, State == "Maryland")

str(FoodAccess2015_MD, list.len = 20, strict.width = "cut")

22 4 Data Import and Wrangling

'data.frame': 1399 obs. of 147 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "2400"..
$ State : chr "Maryland" "Maryland" "Maryland" "Maryland" ...
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ OHU2010 : num 1523 1284 1133 1350 1044 ...
$ GroupQuartersFlag : num 0 0 0 0 0 0 0 0 0 0 ...
$ NUMGQTRS : num 39 1517 155 14 345 ...
$ PCTGQTRS : num 0.01049 0.33238 0.05576 0.00463 0.12619 ...
$ LILATracts_1And10 : num 1 0 0 1 1 0 0 0 0 0 ...
$ LILATracts_halfAnd10: num 1 0 0 1 1 1 1 1 0 0 ...
$ LILATracts_1And20 : num 0 0 0 1 1 0 0 0 0 0 ...
$ LILATracts_Vehicle : num 0 0 0 0 0 0 1 1 0 0 ...
$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...
$ LowIncomeTracts : num 1 1 1 1 1 1 1 1 1 1 ...
$ PovertyRate : num 6.6 13.7 20.2 12.8 56 ...
$ MedianFamilyIncome : num 56875 60943 42727 48831 34519 ...
$ LA1and10 : num 1 0 0 1 1 0 0 0 0 0 ...
$ LAhalfand10 : num 1 0 0 1 1 1 1 1 0 0 ...
$ LA1and20 : num 0 0 0 1 1 0 0 0 0 0 ...
[list output truncated]

To verify that the new object only contains Maryland, call unique():

unique(FoodAccess2015_MD$State)

[1] "Maryland"

While it is possible to continue to work with the entire FoodAccess2015 data frame, removing
unwanted variables (columns) reduces the size of the data frame.

Based on the documentation https://www.ers.usda.gov/data-products/food-access-research-

atlas/documentation/, we are interested in:

• Urban/Rural designation,
• County,
• Total population,
• Low Income, and
• Vehicles access.

To identify variable names in the FoodAccess2015 data frame we import the Variable Lookup sheet
from the FoodAccess2015.xlsx Excel workbook (sheet 2, see above), and show the first six entries
(rows) with the head() function.

4.2 Data Manipulation (Wrangling) 23

FoodAccessVar <- openxlsx::read.xlsx("data/FoodAccess2015.xlsx",
sheet = "Variable Lookup")

head(FoodAccessVar, 6)

Field LongName
1 CensusTract Census tract
2 State State
3 County County
4 Urban Urban tract
5 POP2010 Population, tract total
6 OHU2010 Housing units, total
Description
1 Census tract number
2 State name
3 County name
4 Flag for urban tract
5 Population count from 2010 census
6 Occupied housing unit count from 2010 census

To identify the variable name for low income, we can query the FoodAccessVar data frame using a
regular expression (regex). Regular expressions are strings of text that help to find text pattern. The
regular expression "[Ll]ow[[:space:]][Ii]ncome" for example will match the character strings Low

income, low income, Low Income, and low Income.

The function grepl() is a function that will check if the content of an element of a vector (such the
cell of a table) matches a regular expression. It will return a logical vector (TRUE/FALSE). Therefore
we can use grepl() to extract rows from a data frame that contain the regular expression.

FoodAccessVar_low_income <- subset(FoodAccessVar,
grepl("[Ll]ow[[:space:]][Ii]ncome",
FoodAccessVar$LongName) == TRUE)

FoodAccessVar_low_income[,1:2]

Field
10 LILATracts_1And10
11 LILATracts_halfAnd10
12 LILATracts_1And20
13 LILATracts_Vehicle
15 LowIncomeTracts
LongName
10 Low income and low access tract measured at 1 mile for urban areas and 10 miles

for rural areas
11 Low income and low access tract measured at 1/2 mile for urban areas and 10 miles

24 4 Data Import and Wrangling

for rural areas
12 Low income and low access tract measured at 1 mile for urban areas and 20 miles

for rural areas
13 Low income and low access tract using vehicle access or low income and low access

tract measured at 20 miles
15 Low income tract

The first line of the code extracts the rows of the FoodAccessVar data frame that have reg-
ular expression in the variable LongName. The filtered data frame is assigned to the object
FoodAccessVar_low_income.

The second line displays the first two columns of the new data frame/object.

We repeat the code above for vehicle access, and extract rows that contain the expression [Vv]ehicle

[Aa]ccess]. The filtered data frame is assigned to the object FoodAccessVar_vehicle_access.

FoodAccessVar_vehicle_access <- subset(FoodAccessVar,
grepl("[Vv]ehicle[[:space:]][Aa]ccess",
FoodAccessVar$LongName) == TRUE)

FoodAccessVar_vehicle_access[,1:2]

Field
13 LILATracts_Vehicle
14 HUNVFlag
25 LATractsVehicle_20
54 lahunvhalf
55 lahunvhalfshare
80 lahunv1
81 lahunv1share
106 lahunv10
107 lahunv10share
132 lahunv20
133 lahunv20share
LongName
13 Low income and low access tract using vehicle access or low income and low access

tract measured at 20 miles
14 Vehicle access, tract with low vehicle access
25 Low access tract using vehicle access and at 20 miles in rural areas
54 Vehicle access, housing units without and low access at 1/2 mile, number
55 Vehicle access, housing units without and low access at 1/2 mile, share
80 Vehicle access, housing units without and low access at 1 mile, number
81 Vehicle access, housing units without and low access at 1 mile, share
106 Vehicle access, housing units without and low access at 10 miles, number
107 Vehicle access, housing units without and low access at 10 miles, share
132 Vehicle access, housing units without and low access at 20 miles, number
133 Vehicle access, housing units without and low access at 20 miles, share

4.2 Data Manipulation (Wrangling) 25

Based on the above outputs, it looks like that the variables HUNVFlag and LowIncomeTracts are of
interest. The first identifies tracts with low vehicle access, the second low-income tracts.

We therefore subset the FoodAccess2015_MD data frame to only keep the CensusTract, County, Urban,
POP2010, LowIncomeTracts, and HUNVFlag variables (columns).

FoodAccess2015_MD <- subset(FoodAccess2015_MD, select = c(CensusTract, County, Urban,
POP2010, LowIncomeTracts,
HUNVFlag))

str(FoodAccess2015_MD, strict.width = "cut")

'data.frame': 1399 obs. of 6 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "240010004"..
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ LowIncomeTracts: num 1 1 1 1 1 1 1 1 1 1 ...
$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...

Let’s see if the data set contains suspicious data. In particular, we should check whether the data for
the census tracts are complete and make sense.

First, let’s verify that there are no missing values with the colSums(is.na()) nested function.

colSums(is.na(FoodAccess2015_MD))

CensusTract County Urban POP2010 LowIncomeTracts
0 0 0 0 0
HUNVFlag
0

The output shows that there are no missing values.

The variable POP2010 reports the number of residents in a census tract. If reported correctly, all
entries should be greater than 0. A census tract with no residents would just not make any sense. The
population should range between 1,800 and 8,000 (U.S. Census Bureau, 2019). To check whether
there are entries without residents, we first search for entries without residents and then count them
with nrow(). nrow() is a function that shows you how many rows are in a data frame.

26 4 Data Import and Wrangling

bad_census_tracts <- subset(FoodAccess2015_MD, POP2010 == 0)

nrow(bad_census_tracts)

[1] 9

It looks like there are nine entries without residents. Let’s see who they are by calling
bad_census_tracts. To shorten the output, we only display the census tract, the county, (columns/-
variables 1 and 2) and POP2010 (variables 4).

bad_census_tracts[,c(1:2, 4)]

CensusTract County POP2010
30065 24005980000 Baltimore 0
30066 24005980100 Baltimore 0
30067 24005980200 Baltimore 0
30191 24019990000 Dorchester 0
30821 24035990100 Queen Anne's 0
30839 24037990000 St. Mary's 0
30847 24039990100 Somerset 0
30924 24047980000 Worcester 0
30925 24047990000 Worcester 0

We remove these tracts by keeping all the entries that have a POP2010 value that is not 0 (hence the
!= operator).

FoodAccess2015_MD_good <- subset(FoodAccess2015_MD, POP2010 != 0)

Calling nrow(subset(FoodAccess2015_MD_good, POP2020 == 0)) should return [1] 0

nrow(subset(FoodAccess2015_MD_good, POP2010 == 0))

[1] 0

And it does.

We are also interested in identifying possible vaccination deserts in Baltimore City, and could subset
the Maryland Food Access data set for Baltimore City. However, at this point the Maryland data set

4.2 Data Manipulation (Wrangling) 27

does not contain any geographic information. The subsection “Merging Data Frames” shows how to
add geographic information to the data set. Once that is done we will create a subset for Baltimore
City.

Census Tracts

The census tract data is for the entire state of Maryland and contains the census tract boundaries (as
polygons). For our purposes, we will combine this data set with the Food Access data set.

Let’s check if all entries do have geographic information (i.e., a geometry entry).

colSums(is.na(MD_CensusTracts_2010))

GEO_ID STATE COUNTY TRACT NAME LSAD CENSUSAREA
0 0 0 0 0 0 0
geometry
0

There are no missing values.

Vaccination Sites

The VaccineSites data frame lists COVID-19 vaccination sites in Maryland. To list all the variables
(columns) we can use the function colnames().

colnames(VaccineSites)

[1] "OBJECTID" "facilityid"
[3] "name" "fulladdr"
[5] "Location" "X"
[7] "Y" "municipality"
[9] "CreationDate" "Creator"
[11] "EditDate" "Editor"
[13] "ActiveYesNo" "site_type"
[15] "appt_required" "operationalhours"
[17] "docorder_required" "costfree"
[19] "cost_outpocket" "drivethru"
[21] "pedaccess" "transitAccess"
[23] "test_antigen" "test_antibody"
[25] "other_notes" "insurance_accepted"
[27] "medicaid" "cost_other"
[29] "cost_notes" "test_rapid"
[31] "schedule_url" "online_scheduling"
[33] "scheduling_contact" "scheduling_contact_phone"
[35] "scheduling_contact_email" "test_pcr"

28 4 Data Import and Wrangling

[37] "website_url" "X_coord"
[39] "Y_coord" "test_pediatric"
[41] "multi_language" "test_pediatric_notes"
[43] "created_user" "created_date"
[45] "last_edited_user" "last_edited_date"
[47] "County" "PreRegistrationURL"

The data frame has 48 variables including a variable with GPS information (Location). Let’s check
if all entries have GPS information.

sum(is.na(VaccineSites$Location))

[1] 0

All entries have GPS coordinates.

Remove unwanted variables

The VaccineSites data frame contains information that is not relevant for our analysis. We are
interested in the GPS coordinates (Location), and the name of the facility (name). Furthermore,
information on whether a physician referral is required (docorder_required), whether it is cost-free
(costfree), and whether the facility is accessible by foot (pedaccess) would be interesting in the
context of affordable service.

The following code subsets the VaccineSites data frame for the above variables, and checks whether
data for all variables is available.

VaccineSites_mod <- subset(VaccineSites, select = c("name", "Location", "pedaccess",
"docorder_required", "costfree"))

str(VaccineSites_mod, strict.width = "cut")

'data.frame': 556 obs. of 5 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Lumi"..
$ Location : chr "(38.990512076102, -76.5341664410021)" "(38.982597"..
$ pedaccess : logi NA NA NA NA NA NA ...
$ docorder_required: logi NA NA NA NA NA NA ...
$ costfree : logi NA NA NA NA NA NA ...

colSums(is.na(VaccineSites_mod))

4.2 Data Manipulation (Wrangling) 29

name Location pedaccess docorder_required
0 0 556 556
costfree
556

It turns out that we only have information on the name and coordinates for all facilities. Therefore,
we drop the other variables.

VaccineSites_mod <- subset(VaccineSites, select = c("name", "Location"))

str(VaccineSites_mod, strict.width = "cut")

'data.frame': 556 obs. of 2 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Luminis Healt"..
$ Location: chr "(38.990512076102, -76.5341664410021)" "(38.9825972406456, "..

colSums(is.na(VaccineSites_mod))

name Location
0 0

As so often with R, there are alternative ways to accomplish the same task. R has functions that
remove entries if they have missing values. For example the function na.omit() removes all entries
that have missing values. Another function, complete.cases() removes either all variables or
all rows that have some missing values. We only want to drop variables that only have missing
values. We can do so with the following code. It will remove all variables that only contain missing
values from the subsetted data frame VaccineSites_mod2.

VaccineSites_mod2 <- subset(VaccineSites, select = c("name",
"Location",
"pedaccess",
"docorder_required",
"costfree"))

VaccineSites_mod2 <- VaccineSites_mod2[, colSums(is.na(VaccineSites_mod2))
!= nrow(VaccineSites_mod2)]

colSums(is.na(VaccineSites_mod2))

30 4 Data Import and Wrangling

name Location
0 0

str(VaccineSites_mod2, strict.width = "cut")

'data.frame': 556 obs. of 2 variables:
$ name : chr "Luminis Health Anne Arundel Medical Center" "Luminis Healt"..
$ Location: chr "(38.990512076102, -76.5341664410021)" "(38.9825972406456, "..

Merging Data Frames

MD_CensusTracts_2010 has the geographic boundaries of the census tracts in Maryland. To add the
attributes/properties to the census tracts that will allow us to map census tracts that have limited
access to vaccination sites, and/or are defined as low income, and/or have limited access to a vehicle,
etc. the FoodAccess2015_MD data frame is merged with MD_CensusTracts_2010.

The function merge() allows to combine data frames based on a common variable. Here the common
variable is the census tract. Naturally, the requirement for this function is that both data frames have
one variable in common.

Prepare data frames for merging

Both data frames/objects (FoodAccess2015_MD_good, MD_CensusTracts_2010) have census tract infor-
mation. However, the data frames encode the census tracts differently, and have different variable
names. Furthermore, FoodAccess2015_MB_good has 13 fewer observations (in part because we re-
moved a few observations).

Structure of Food Access
str(FoodAccess2015_MD_good, list.len = 20, strict.width = "cut")

'data.frame': 1390 obs. of 6 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "240010004"..
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ LowIncomeTracts: num 1 1 1 1 1 1 1 1 1 1 ...
$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...

4.2 Data Manipulation (Wrangling) 31

Struture of MD_CensusTracts
str(MD_CensusTracts_2010, list.len = 5, strict.width = "cut")

Classes 'sf' and 'data.frame': 1403 obs. of 8 variables:
$ GEO_ID : chr "1400000US24015031400" "1400000US24017850101" "1400000US2"..
$ STATE : chr "24" "24" "24" "24" ...
$ COUNTY : chr "015" "017" "017" "017" ...
$ TRACT : chr "031400" "850101" "850706" "850710" ...
$ NAME : chr "314" "8501.01" "8507.06" "8507.10" ...
[list output truncated]
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA N..
..- attr(*, "names")= chr [1:7] "GEO_ID" "STATE" "COUNTY" "TRACT" ...

The tract ID of the FoodAccess2015_MD data frame contains the state ID (24), a three-digit county ID
(f.e. 001 for Allegany county), and a six-digit identifier of the census tract which unique within each
county. In contrast, MD_CensusTracts_2010 shows only the six-digit identifier of the census tract in
each county. The two-digit state ID and the three-digit county ID are stored in a separate variable.

FoodAccess2015_MD 24001000100
24001000200
...

MD_CensusTracts_2010 000100
000200
...

Furthermore, the variable name is different (CensusTract vs. TRACT).

The function paste() allows to combine variables (columns). The following code merges the three
variables (columns) STATE, COUNTY and TRACT of the MD_CensusTracts_2010 data frame and puts the
new ID into a new variable (CensusTract)

merge columns
MD_CensusTracts_2010$CensusTract <- paste(MD_CensusTracts_2010$STATE,

MD_CensusTracts_2010$COUNTY,
MD_CensusTracts_2010$TRACT,
sep = "")

The code below checks the class of the modified data frame, and confirms that the
MD_CensusTracts_2010 is still a (spatial) simple feature (sf) object.

32 4 Data Import and Wrangling

class(MD_CensusTracts_2010)

[1] "sf" "data.frame"

Merge data frames

MD_CensusTracts_2010 is a sf object and contains spatial data. When merging with non spatial data
frames, the sf object that contains spatial data has to come first.

MD_CensusTracts_Map <- merge(MD_CensusTracts_2010, FoodAccess2015_MD_good,
by = "CensusTract", all.x = TRUE)

dimension
dim(MD_CensusTracts_Map)

[1] 1403 14

class(MD_CensusTracts_Map)

[1] "sf" "data.frame"

structure (columns 1:13), 14 = geometry
str(MD_CensusTracts_Map[,c(1:13)], list.len = 13, strict.width = "cut")

Classes 'sf' and 'data.frame': 1403 obs. of 14 variables:
$ CensusTract : chr "24001000100" "24001000200" "24001000300" "240010004"..
$ GEO_ID : chr "1400000US24001000100" "1400000US24001000200" "14000"..
$ STATE : chr "24" "24" "24" "24" ...
$ COUNTY : chr "001" "001" "001" "001" ...
$ TRACT : chr "000100" "000200" "000300" "000400" ...
$ NAME : chr "1" "2" "3" "4" ...
$ LSAD : chr "Tract" "Tract" "Tract" "Tract" ...
$ CENSUSAREA : num 187.94 48.07 8.66 3.72 4.42 ...
$ County : chr "Allegany" "Allegany" "Allegany" "Allegany" ...
$ Urban : num 0 0 0 1 1 1 1 1 1 1 ...
$ POP2010 : num 3718 4564 2780 3022 2734 ...
$ LowIncomeTracts: num 1 1 1 1 1 1 1 1 1 1 ...

4.2 Data Manipulation (Wrangling) 33

$ HUNVFlag : num 0 0 0 0 0 0 1 1 0 0 ...
[list output truncated]
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA N..
..- attr(*, "names")= chr [1:13] "CensusTract" "GEO_ID" "STATE" "COUNTY" ...

The by = "CensusTract" argument of the merge() function merges the data frames based on the
variable CensusTract. The argument all.x = TRUE will keep all entries of the first data frame and
will add missing values if there is no match of the common variable (CensusTract) in the 2nd data
frame. Entries that do have a matching CensusTract in the first data frame are excluded.

We should have at least 13 entries with missing data.

colSums(is.na(MD_CensusTracts_Map))

CensusTract GEO_ID STATE COUNTY TRACT
0 0 0 0 0
NAME LSAD CENSUSAREA County Urban
0 0 0 13 13
POP2010 LowIncomeTracts HUNVFlag geometry
13 13 13 0

Indeed, we have 13 entries with missing values. These census tracts will be mapped as having “no
data.”

Subset for Baltimore City

Last, we extract the data for Baltimore City from the MD_CensusTracts_Map data set. We can subset
using the last three digits of the FIPS county code (stored in the variable COUNTY), which for Baltimore
City is 510.

BC_CensusTracts_Map <- subset(MD_CensusTracts_Map, COUNTY == "510")

str(BC_CensusTracts_Map, list.len = 13, strict.width = "cut")

Classes 'sf' and 'data.frame': 200 obs. of 14 variables:
$ CensusTract : chr "24510010100" "24510010200" "24510010300" "245100104"..
$ GEO_ID : chr "1400000US24510010100" "1400000US24510010200" "14000"..
$ STATE : chr "24" "24" "24" "24" ...
$ COUNTY : chr "510" "510" "510" "510" ...
$ TRACT : chr "010100" "010200" "010300" "010400" ...
$ NAME : chr "101" "102" "103" "104" ...
$ LSAD : chr "Tract" "Tract" "Tract" "Tract" ...
$ CENSUSAREA : num 0.152 0.137 0.26 0.144 0.06 0.067 0.076 0.256 0.165 0..

34 4 Data Import and Wrangling

$ County : chr "Baltimore City" "Baltimore City" "Baltimore City" ""..
$ Urban : num 1 1 1 1 1 1 1 1 1 1 ...
$ POP2010 : num 3022 3009 2208 2870 1724 ...
$ LowIncomeTracts: num 0 0 0 0 0 0 0 0 1 1 ...
$ HUNVFlag : num 0 0 0 0 0 0 0 0 1 0 ...
[list output truncated]
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA N..
..- attr(*, "names")= chr [1:13] "CensusTract" "GEO_ID" "STATE" "COUNTY" ...

colSums(is.na(BC_CensusTracts_Map))

CensusTract GEO_ID STATE COUNTY TRACT
0 0 0 0 0
NAME LSAD CENSUSAREA County Urban
0 0 0 0 0
POP2010 LowIncomeTracts HUNVFlag geometry
0 0 0 0

Baltimore City has 200 entries, and there are no missing values.

